

POWERTRAN CORTEX

CORTEX POWER BASIC AND
ASSEMBLY LANGUAGE MONITOR

USER’S GUIDE

CONTENTS

1. INTRODUCTION

2. THE BASIC LANGUAGE

3. ENTERING, EDITING AND SAVING PROGRAMS

4. BASIC REFERENCE GUIDE

5. THE VIDEO DISPLAY PROCESSOR

6. USING CHARACTER STRINGS

7. MONITOR REFERENCE GUIDE

8. MACRO INSTRUCTIONS

REFERENCE SECTION

A. ALPHABETICAL LIST OF BASIC KEYWORDS

B. LIST OF BASIC KEYWORDS BY FUNCTION

C. BASIC ERROR MESSAGES

D. LIST OF MONITOR COMMANDS

E. MEMORY AND CRU MAPS

F. SCREEN LAYOUT AND COORDINATES

G. TMS9995 INSTRUCTION SET

H. ASCII CODES

I. BIBLIOGRAPHY

This page is intentionally blank

1. INTRODUCTION

This reference guide contains Information about the software
supplied with the Cortex microcomputer. This consists of
Power Basic and an assembly language monitor.

Although this user’s guide is not intended as a beginner’s
tutorial, sections 2 and 3 do give a summary of programming
in Basic.

Section 4 explains how each Basic keyword is used and
examples are given where appropriate. Detailed information is
given for some statements, such as how variables are stored
in memory. This is given for those who require a deeper
understanding of the system. The user can, however, write
programs effectively without delving into the inner workings
of Basic.

Section 5 explains how to use the color graphics statements
and section 6 deals with character strings. These are used a
little differently in CORTEX BASIC from other computers.

The remainder of the book, sections 7 and 8, is intended for
the advanced user who wishes to program in assembly language
and do low level I/O.

A reference section is included at the back of the book which
brings together a lot of information in compressed form. This
section will be useful when you are familiar with using your
CORTEX computer.

This user’s guide refers to memory in terms of BYTES and
WORDS. The CORTEX is a 16-bit microcomputer. This means that
information is handled in blocks of 16 binary digits. This
block is known as a WORD. Users of 8 bit computers may be
more familiar with the BYTE, which is 8 bits long. On the
CORTEX, one WORD equals two BYTES.

The expression "Kbyte" is short for Kilobyte and means 1024
bytes. This is often abbreviated to just "K". The CORTEX is
supplied with 64K of RAM, which works at 65536 bytes. Some of
this is used by BASIC; the rest is free for your programs.

1-1

This page is intentionally blank

2. THE BASIC LANGUAGE

2.1 Introduction to the BASIC Language

This section gives a brief introduction to the BASIC language
and how to use it. If you are already familiar with BASIC,
you can skip to section 2.2.

When first turned on, the CORTEX puts the following message
on the television screen.

CORTEX BASIC Rev. x.x (C) 1982
*Ready

"x.x" gives the version of BASIC that you have.

Check that the CAPS LOCK key is pressed down. Type in SIZE,
followed by the "RETURN" key. BASIC will respond with details
of the memory space allocated to program end variable storage
and the amount of memory left:

SIZE
PRGM:10 Bytes
VARS:0 Bytes
FREE:34174 Bytes

The actual numbers will depend on how much memory there is in
the system and on the version of BASIC.

SIZE is an example of a BASIC command. It is carried out
immediately when "RETURN" is pressed. Commands include things
like listing, storing, loading and executing BASIC programs.
A full list of commands is given in appendix A of the
reference section.

Apart from commands, the other type of input that can be
entered from the keyboard is a statement. A statement is an
instruction to do something, but it is not carried out
immediately. The following statement is an instruction to add
two numbers together and to print the result:

30 PRINT A+B

Type it on your CORTEX exactly as shown end press "RETURN".

If you make a mistake typing, there are two
things you can do: (1) press the "RUBOUT" key to
backspace, one by one, over the characters that
are wrong, and then type them again; or (2) press
the escape key (marked "ESCAPE"), and then type
the whole line again (Section 3 gives fuller
details of editing lines).

2-1

BASIC will perform some checks on the line after
you have pressed "RETURN". If it discovers an
error it will print an appropriate error message,
print the line on the screen again and position
the cursor where it thinks the error is, so that
you can type over it. Here is an example:

30 PRINT A.8
** Illegal character **

30 PRINT A.B
 ^
 |
Cursor positioned here

Overtype the mistake with the correct character,
and then press "RETURN". Remember, you can use
the "RUBOUT" key to backspace over the line, or
press "ESCAPE" to type the whole line again.

A statement is normally preceded by a line number (30 in the
example above) to distinguish it from a command. Statements
with a line number are not carried out immediately; they are
stored in memory for future use. Several statements can be
entered and stored, and then executed together as a program.
The line numbers determine the order in which the statements
will be carried out. It does not matter in which order the
statements were actually entered: BASIC arranges them into
the correct order.

In the statement just entered, "A" and "B" are variables:
they stand for values which can be set up, referred to, and
changed by program statements. A and B represent storage
locations in the computer memory.

The types of values that can be used in BASIC programs are

Integers (whole numbers 1, 2, 3, etc) up to 32,767 and

down to -32,768.

Floating point numbers (i.e. decimals such as 12.34 and

0.001234)

Strings (i.e. sequences of characters enclosed in quotes -

"THIS IS A STRING")

Variables are described more fully in section 2.7

2-2

As it happens, BASIC cannot execute statement 30 as it is,
because A and B do not yet have any values to add together or
print. Variables must be given a value before they can be
used. If you tried to execute statement 30 as it is, BASIC
would print an error message:

** Undefined variable ** at 30

Until a variable has been assigned a value, BASIC does not
even know of the variable's existence and is unable to do any
calculations with it.

To resolve this difficulty, two more statements can be added
to the program with appropriate line numbers to ensure that
they are executed before statement 30:

10 A=5
20 INPUT B

Statement 10 is an assignment statement that introduces the
variable A to BASIC and assigns the value 5 to it. Once this
statement has been executed A can be referred in any later
statements and will have the value 5 (unless it is changed in
the meantime). Further assignment statements can be used to
change the value of A.

Statement 20, when executed, introduces the variable B and
causes BASIC to ask for a value for it. Having asked, it
waits until a number is entered from the keyboard.

Note that neither of these things has happened yet. What you
have done is to type in some statements which make a program
that will be executed when we give BASIC the command to do
so. Despite having entered the new statements, A and B are
still undefined - and will continue to be undefined until we
RUN the program.

To look at the program you have just entered type

LIST

followed by "RETURN". LIST is another command like SIZE.
BASIC will list the program stored in its memory in the order
in which it w111 be executed:

10 A=5
20 INPUT B
30 PRINT A+B

If your listing does not look like this, re-type the line
that is wrong. If you have typed a wrong line number, remove
it from the program by typing the line number followed by
"RETURN". Then you can enter the correct line. Again use LIST
to check that the program is correct.

2-3

So far, we have simply constructed a program - a list of
statements - in BASIC's memory. To carry out (execute) this
program, type the command

RUN

(followed by "RETURN").

BASIC will perform statement 10, and give a value of 5 to the
new variable A. You will not observe anything while this is
happening.

Halfway through executing statement 20, BASIC will output a
prompt (?) to the screen and will wait for you to enter a
value for the new variable B. Type a number followed by
"RETURN". BASIC will add the values of A and B together,
print the result, and return to wait for the next command.
The whole sequence will look something like this:

RUN
? 256
261

Stop at 30

"256" is the value entered for "B"; BASIC has printed "261"
which is 256 plus the value assigned to A. Try RUN again,
this time entering a different number, perhaps one with a
decimal point.

You can also change the program and re-run it. You could set
A to a different value, or replace "A+B" with a different
mathematical formula. As with most computer languages, "*" is
used for multiply and "/" for divide; "+" and "-" have the
usual meaning. See section 4 for a full description.

You can change, or edit, the program simply by
retyping the appropriate line, or adding a new
one with a suitable line number. BASIC also
provides a simple line editor that allows single
characters to be changed, inserted or deleted
without retyping the whole line. Section 3 gives
the commands available for editing single lines.

Note that the assignment statement "A=5" is not simply a
statement of fact as it would be in mathematics ("A equals
5"). In BASIC it stands for the action: "make A equal to 5".
Thus a statement such as "A=A+5" is allowed in BASIC
(provided A has already been assigned a value); try it, and
see what it does.

2-4

The assignment statement is sometimes also called the LET
statement in BASIC, because it can also be written:

15 LET A=A+5

The LET part is optional and is usually omitted.

One useful thing to note is that a statement entered without
a line number is not stored, but is carried out immediately,
like a command. If you want to know the internally stored
value of a variable at any time, simply type

PRINT A (or any other variable that you want to see)

PRINT is used so frequently that it can be abbreviated to one
character, a semicolon or question mark. The above statement
can also be written

;A or ?A

The following is a more complex program which can be used to
explore some of the additional features of BASIC. To prepare
for entering this program, first type the command

NEW

which will clear all statements and variables from BASIC's
memory ready for a new program. Now type the following:

10 DIM $A(4)
20 $A(0)="THE NUMBER IS"
30 INPUT "INPUT NUMBER", N
40 IF N-INT(N)<>0 THEN PRINT $A(0);N;: GOTO 60
50 GOSUB 100 ! EVEN OR INTEGER
60 PRINT ", ITS SQUARE IS";N*N;", AND ITS SQUARE ROOT IS";
70 IF N<0 THEN PRINT " UNDEFINED": GOTO 30
80 PRINT SQR(N)
90 GOTO 30
100 IF INT(N/2)*2=N THEN PRINT $A(0);" EVEN"; :RETURN
110 PRINT $A(0);" ODD";
120 RETURN

Correct any typing errors as described above. You must get
all the punctuation exactly right. BASIC will find some
errors. If you leave out one quotation mark (") it will be
detected, because quotation marks always come in pairs
surrounding a length of text - "THE NUMBER IS". Other errors
may not be detected until you RUN the program.

2-5

LIST the program as a final check. You may notice that line
10 is listed as

10 DIM $A[4]

This is perfectly correct; BASIC makes no distinction between
parentheses () and square brackets []. Your program is stored
by BASIC in a condensed and encoded form to take up as little
space as possible. (For this reason, BASIC programs are very
compact). When you enter a statement, a part of BASIC called
the editor takes your input and converts it into this coded
form. The editor is also responsible for translating the
coded program back into an understandable form and printing
it when you type LIST. While you are entering, changing or
listing program statements you are using the editor, though
you will normally be unaware of this.

When you type RUN, another part of BASIC called the
interpreter takes over from the editor. The interpreter
fetches the stored program statements one by one and carries
out the coded instructions.

RUN the new program and enter a number (followed by "RETURN")
in response to the question mark prompt. Press the ESCAPE key
to get out of the program. (This will work at any time, even
if BASIC is waiting for an input. It is the normal way of
stopping a program that seems unwilling to stop by itself).
The result should be something like this:

RUN
INPUT NUMBER? 17
THE NUMBER IS ODD, ITS SQUARE IS 289, AND ITS SQUARE ROOT IS 4.1231056256
INPUT NUMBER? -6
THE NUMBER IS EVEN, ITS SQUARE IS 36, AND ITS SQUARE ROOT IS UNDEFINED
INPUT NUMBER, 2.35
THE NUMBER IS 2.35, ITS SQUARE Is 5.5225, AND ITS SQUARE ROOT IS 1.5329709716
INPUT NUMBER? (escape key)

STOP AT 30

2-6

There are several things to note about this program:

o "$A" is a string variable which holds text rather than
numeric values. Where a variable is used to store
strings, its name is preceded by a "$" (lines 20, 40,
100, 110). String variables are described in section
2.5.5.

o $A is also an array (sometimes known as a dimensioned

variable), which means that it stands not for a single
storage location but for several storage locations
grouped together in memory. Arrays are often used to
store text strings which usually require more space
than is available in a single storage location. They
can also be used to store groups of numeric values.
Statement 10 (the DIMension statement) tells BASIC that
$A is going to be an array rather than an ordinary
variable and also declares how big it is. Arrays are
described in section 2.5.6, and some additional
information on string arrays is given in section 6.

o The INPUT statement can specify a text prompt to be

printed before the question mark (line 30). There are
many more options for the INPUT statement, see section
4.

o The IF .. THEN statement (line 40) allows conditional

execution of an action. This statement means "IF the
number just entered is not a whole number THEN print
the string stored in the array $A, followed by the
number N, and go to line 60 for the next statement"
(otherwise do nothing, and continue with line 50). "<>"
means "is not equal to"; INT is described below.

o It is possible to place more than one BASIC statement

on a single line, separated by ":" (lines 40, 70, 100).
Each Statement is executed in order. This feature is
particularly useful with IF .. THEN statements: all
statements on the same line after the THEN will be
executed if the condition is true and not executed if
it is false.

o Comments can be placed at the end of a statement line.

They are preceded by "!". Everything after the
exclamation mark is ignored by BASIC when it executes
the statement (line 50). However comments do take up
storage apace in program memory.

2-7

o Statements such as GOTO and GOSUB can be used to alter
the normal flow of program execution which is in order
of increasing line number. The GOTO statement in line
40 w111 cause the BASIC interpreter to go directly to
line 60 to find the next statement. The GOSUB statement
in line 50 causes similar transfer to line 100. In this
case BASIC "remembers" where it was; when the
interpreter finds the RETURN statement in line 120, it
goes back to the end of the GOSUB statement (line 50),
and executes line 60 next. The GOTO is a permanent
diversion of program flow; the GOSUB is a temporary
diversion which will return to the main program.
Statements 100 to 120, which are executed out of the
main line of the program under control of the GOSUB
statement, are called a subroutine.

o The PRINT statement (lines 40, 60, 70, 100, 110) has a

number of options to allow output of text and layout of
printed numbers on the page. (Try substituting "," for
";" in one of the print statements, and see what
happens).

o SQR (square root) and INT (integer part) are two

examples of the standard functions available in BASIC.
It is also possible to define new functions in a
program (section 4).

o This program, as it is written, is an endless loop:

there is no way to exit from the program except by
pressing ESCAPE.

By understanding and experimenting with this program, you
will learn some of the more important features of BASIC.
Section 2.2 gives further information about BASİC in a more
formal and systematic way than is presented above. In section
4 there are descriptions of the individual commands,
statements and operations that make up the BASIC language.
Appendices A and B give a complete Quick Reference Guide to
CORTEX BASIC.

Having written a BASIC program, you may wish to save it on
cassette tape for more permanent storage. Section 3 describes
how to do this.

For special purposes, subroutines can be written in 9995
assembly language and called up from a BASIC program.

2-8

2.2 CORTEX BASIC Program

A CORTEX BASIC program consists of a number of statement
lines. Each line is preceded by a line number which must be
an integer in the range 1 to 32767. This line number
indicates the order in which the statement lines w111 be
arranged before the program is executed. The lowest line
number will be the first line and the highest line number
will be the last line. These statements may either perform
some action such as adding two variables together and
assigning the sum to a third variable (e.g. 'A=B+C'), or may
be control statements such as GOSUB 3000 that change the
order of execution of the program.

To save memory a number of statements can be written on one
line using the statement concatenation operator (:). Each
statement will be executed in turn. The general syntax for a
line is:

{ line number } statement [: statement] { ! comment }

where { } indicates optional items

[] indicates item is repeated as many times as
required.

Exceptions:

o DATA must be the only statement on a line.

o DEF must be the only statement on a line.

o ON must be the only statement on a line.

o NEXT should be the first statement on a line,

otherwise it may not be found to terminate its
corresponding FOR loop.

o REM makes the remainder of the line a comment.

o STOP must be the last statement on a line.

A full list of the CORTEX BASIC commands/statements is
provided in section 4.

2-9

2.3 Character Set

1) Upper and lower case alphabet.
2) Digits 0 to 9.
3) Special characters
 ! " # $ % ^ ' ([]) * : = - + ; , . ? / < >

Note: The THEN keyword can be abbreviated to ':' and PRINT
can be abbreviated to ';' or '?'.

2.4 Constants

Constants are entered as decimal or hexadecimal numbers. A
decimal constant uses the digits 0 to 9 and "." for the
decimal point. E is used for 'times ten to the power of',
e.g. 4000 could be written as 4E3.

A hexadecimal constant is one to four hex digits followed by
the letter H. A hex constant beginning with one of the
letters A - F must be preceded by a zero.

2.5 Variables

A CORTEX BASIC variable can be used to store either an
integer number, a real (floating point) number, or a
character string depending on the context in which the
variable is used. Although a variable may contain a number
(integer or real) it can be used as though it contained a
character string, and vice versa.

Variable storage starts in high memory and builds down
towards low memory as new variables are declared, with each
variable being allocated six consecutive bytes of memory. A
variable's address is that of the word lowest in memory, i.e.
the word nearest to address zero. In the diagrams this is
referred to as the 'first word'.

2-10

2.5.1 Variable Names

A variable name is either an alphabetic character followed by
a number in the range 0 to 127 (e.g. Z100) or an alphabetic
string up to three characters long (e.g. A, ST, and LST). The
variable name cannot be identical to a CORTEX BASIC keyword,
nor can it form the beginning of a keyword. The following
variable names are not valid:

LIS Beginning of LIST (a BASIC statement)
MEM A BASIC function
TOT First 2 letters are the BASIC keyword TO
12B First character is not alphabetic
ABCD More than 3 characters
I130 Number greater than 127
A.B '.' not allowed in variable names

Note: There is a maximum of 140 different variable names in
any one CORTEX BASIC program.

2.5.2 Variable Declarations

Variables do not have to be declared at the beginning of a
program. They are allocated space in memory the first time
you assign a value to them. For example, to declare the
variable TST and assign to it the value 100 the following
statement can be used:

TST=100

A value can be assigned to a variable by either a READ (read
a value from a DATA statement), an INPUT (accept input from
the terminal) or a LET statement. The statement 'TST=100' is
an implied LET, as are all statements of the form:

<variable>=<expression>

where <expression> may contain function calls:

FRD=SIN(PI*NUM)

The above statement assumes that the variables PI and NUM
have already been given a value.

2-11

2.5.3 Integer Variable

If a number can be represented in a 16-bit twos complement
form, it is stored in integer format. Integer numbers in the
range -32768 to +32767 will be stored like this:

 Low memory High memory
|-----------------|---------------|-----------------|
◄-- All zeros --►	2s complement	◄-- All zeros --►
 First word Third word

Integer numbers outside this range (up to approximately 11
decimal digits) will be recognized as integers and printed
out in integer format, even though they will be stored
internally in floating point format (see below). Integer
numbers greater than this will be treated as real numbers and
will be printed out in floating point format (e.g. 1.234E11).

2.5.4 Floating Point Variables

Floating point format allows a real number in the range 0E-75
to 10E+74 to be stored. 'E' represents the multiplier 10; the
integer number following is the power which 10 raised. 2.5E24
means 2.5 times 10 to the power 24. Real constants can be
entered in this format if desired. This representation
provides approximately 11 decimal digits of accuracy and so a
real constant should consist of no more than 11 digits.

A floating point number is represented internally as a
fraction multiplied by a power of 16 (this power is known as
the exponent), and is stored as:

 Exponent
 |-|-------|--|
Sign |-| 7 bit |◄------------40 bit Mantissa-------------►|
bit |-|-------|--|
 First word Third word

Bit 0 (the most significant bit) is the sign bit and
represents the sign of the floating point number: 0 for
positive, 1 for negative. Bits 1 to 7 hold the exponent coded
in Excess 64 notation (the exponent is incremented by 64;
this gives the exponent a range of 0 to 127 representing a
true exponent range of -64 to +63). The remaining 40 bits
contain the normalized mantissa (the mantissa is normalized
if its first hex digit is non-zero). Negative fractions are
stored in true form with the sign bit set to one and not in
twos complement notation.

2-12

2.5.5 Character String Variables

A character string is a sequence of characters enclosed
within single or double quotes. If you wish to use single
quotes within a string, the string must be enclosed by double
quotes and vice versa.

When preceded by a dollar sign ($), the variable is
recognized as containing a string. In this form, a variable
can be used to store up to 5 characters. The last of the 6
bytes is used to terminate the string and contains the null
character (zero). This is necessary to ensure that the
variable defined immediately before the string variable does
not get overwritten and corrupted.

|--------|--------|--------|--------|--------|--------|
BYTE 1	BYTE 2	BYTE 3	BYTE 4	BYTE 5	NULL 0
 First word Third word

Non-printable characters may be included in a character
string by writing their hexadecimal ASCII representation
enclosed in angle brackets (<>). The angle brackets are
stored along with the character string and are only
interpreted when the string is being input from a terminal,
read from a DATA statement, or when the string is being
printed. Note: Attempting to use the character sequence '<>'
in a string via an INPUT, READ or PRINT statement will cause
problems. If these characters are required then the sequence
'<3C><3E>' should be used.

2-13

2.5.6 Array Variables

An array is a number of variables (stored consecutively in
memory) that is referenced by a single variable name.
Individual variables (or array elements) are accessed by
following the variable name with a number that identifies the
position of the variable within the array. This number - the
array subscript - is enclosed in parentheses or square
brackets. Parentheses will be converted into square brackets
by BASIC.

To allocate 10 elements to the array ARR the following
statement is required:

DIM ARR(9)

The elements are referenced by

ARR(0), ARR(1),, ARR(9).

The size parameter supplied to the DIMension statement is one
less than might be expected, as CORTEX BASIC automatically
allocates space starting from element zero.

An array may also be used to hold character strings.
Individual bytes of a character string array can be accessed
by following the array subscript with a semicolon (;) and the
number of the required byte starting from 1. For example,
$ARR(1;3) references the third byte of array element ARR(1);
this corresponds to the letter 'I' in the diagram below,
which shows storage of the string "ABCDEFGHIJ".

 |----------------|----------------| High memory
 | 5th byte - 0 | 6th byte - 0 |)
 |----------------|----------------|)
 | 3rd byte - 'I' | 4th byte - '7' |)◄-- Element
 |----------------|----------------|) ARR(1)
 | 1st byte - 'C' | 2nd byte - 'H' |)
 |----------------|----------------|
 | 5th byte - 'E' | 6th byte - 'F' |)
 |----------------|----------------|)
 | 3rd byte - 'C' | 4th byte - 'D' |)◄-- Element
 |----------------|----------------|) ARR(0)
Low memory | let byte - 'A' | 2nd byte - 'B' |)
 |----------------|----------------|

CORTEX BASIC allows an array to be declared with any number
of dimensions. For most practical applications a two
dimensional array is usually sufficient.

Note: The variable A and the array variable A(0) refer to two
completely different variables.

2-14

2.6 Operators and Expressions

An expression is a list of variables and constants, separated
by operators. There are three types of POWER BASIC operators
and expressions: arithmetic, logical, and relational.

2.6.1 Arithmetic Operators

The following is a list of the valid arithmetic operators:

+ addition
- subtraction
* multiplication
/ division
^ exponentiation
+ unary plus
- unary minus

2.6.2 Arithmetic Expressions

An arithmetic expression is any valid sequence of numbers,
variables, and binary operators (properly balanced, no two
numbers or variables can be adjacent, and no two binary
operators can be adjacent).

For example:

An expression may consist of a single operand:

8
SIN(A)

A sequence of operands may be combined by arithmetic
operators:

X*Y
A*B-W/Z

Any expression may be enclosed in parentheses and considered
to be a basic operand:

(X+Y)/Z
(A+B)*(C-D)

Any expression may be preceded by a plus or minus sign:

+X
-(A+B)
-A+((TAN(-A))*2)

2-15

2.6.3 Logical Operators

The logical operators do "bit-wise" operations on integers.
They consist of the following:

LNOT (unary) 1's complement of integer
LAND (binary) Bit-wise AND of two integers
LOR (binary) Bit-wise OR of two integers
LXOR (binary) Bit-wise exclusive OR

2.6.4 Logical Expressions

Logical expressions are similar to arithmetic expressions.
They both consist of variables, constants, parenthesis, and
operators. The primary difference is that the operators are
different for logical expressions. The logical operators
perform a bit-wise logical operation on the operand(s). For
example, if A = 0AAAAH (hex "AAAA"), and B = 05555H (hex
"5555") and C = 0BBBBH, (hex "BBBB"), then

LNOT (A) would equal "5555"
A LAND B would equal 0
A LOR B would equal 'FFFF'
A LXOR C would equal '1111'

2.6.5 Relational Operators

The relational operators are all binary operators that
operate on two arithmetic expressions. They return values of
1 (TRUE) or 0 (FALSE). Relational operators consist of the
following:

= exactly equal
== approximately equal (plus or minus 9.5 E-07)
< less than
<= less than or equal to
> greater than
>= greater than or equal to
<> not equal

The approximately equal (==) relational operator returns a
TRUE value when the absolute value of the difference between
the two values is less than or equal to 9.5 E-07.

2-16

2.6.6 Boolean Operators

The Boolean operators are designed to work on the resultant
TRUE or FALSE conditions set by the relational operators.
However, they may also operate on variables within the
program, in which case a zero value is considered False and a
non-zero value variable is considered to be True. The Boolean
operators return values of 1 (True) or 0 (False).

Boolean operators consist of the following:

NOT (UNARY) Returns a TRUE value if expression
evaluates to FALSE (non-zero);
otherwise, returns a FALSE value.

AND (BINARY) Returns a TRUE value if both expressions
evaluate to TRUE (non-zero); otherwise,
returns a FALSE value.

OR (BINARY) Returns a TRUE value if either
expression evaluates to TRUE (non-zero);
otherwise, returns a FALSE value.

2.6.7 Boolean and Relational Expressions

Boolean and relational expressions are formed according to
the following rules:

A Boolean or relational expression may consist of a single
element:

NOT(A)
X<>3.10159

Single elements may be combined through the use of the
Boolean operators AND and OR to form compound expressions
such as:

A AND B
X OR Y

Any expression may be enclosed in parentheses and regarded as
an element:

(T OR S) AND (R OR Q)

2-17

2.6.8 Expression Evaluation

Expressions are evaluated left to right if the operators are
of equal precedence, and there are no parentheses. It there
are parentheses in the expression, the sub-expression within
the innermost parentheses is evaluated first. Not all
operators have equal precedence – operands which are operated
on by an operator of high precedence are evaluated before
operations of low precedence.

The precedence of operators is:

1. Expressions in parentheses
2. Exponentiation and negation
3. *,/
5. +,-
6. <=,<>
7. >=,<
8. ==,LXOR
9. NOT,LNOT
10. AND,LAND
11. OR,LOR
12. (=) ASSIGNMENT

2-18

3. ENTERING, EDITING AND SAVING PROGRAMS

3.1 Entering Programs

Commands and programs may be typed in when the computer says:

*Ready

To enter program lines, simply type the line number followed
by the line itself. Finish by pressing the RETURN key.

To avoid typing the line number for every line you can use
the NUMBER command. After you press RETURN to enter a line,
Cortex will automatically give you the next line number. It
will start from line 100 and work in steps of 10.

NUMBER

and the computer responds:

100 (type your line here)

If you want to start from a different line number, say 10,
then you would type:

NUMBER 10

If you wanted to have steps of 20 between lines, then type:

NUMBER 10,20

The first parameter gives the starting line number and the
second the step between lines.

If you make a mistake the computer may spot it for you. It
will output an error message and print the line again ready
for editing. How to do this is explained in the next section.

3-1

3.2 Editing Source Lines

One method of modifying (or editing) a line is simply to
retype the line. However, CORTEX BASIC also supports a line
editor that allows the user to change previously entered
source statements. The available edit commands are:

 key to press effect

 ESC Cancel input line
 RUBOUT Backspace and remove character
 RETURN Enter the edited line
 Left arrow Backspace the cursor one character
 Right arrow Forward space the cursor one character
 INS Insertion mode
 DEL Delete one character
LN EDIT Display the line LN for editing

To start editing, type the line number and press the EDIT
key. This will display the line with the cursor at the end.
If a mistake has been made while entering a line it will be
displayed with the cursor at the point where the mistake was
discovered.

The cursor can be moved along the line by pressing the right
and left arrow keys. Type over the top of displayed
characters to change things. To delete a character press the
delete key.

An attempt to forward space past the last character entered,
or to backspace beyond the first character in the line will
only make the Cortex bleep.

To insert characters, press the insert key. As you type, the
rest of the line will move along, creating space for the
characters you are typing. This effect is cancelled as soon
as any other editing key (arrow, delete or return) is
pressed.

When the RETURN key is pressed, all characters displayed are
entered, regardless of the position of the cursor.

Entering just a line number followed by a RETURN causes the
specified line to be deleted from the stored program. If the
specified line does not exist then an error message is
output.

3-2

Entering a statement with a line number that already exists
causes the original statement to be replaced by the new one.

Changing the line number causes a copy of the original to be
included in the program with the new line number (the
original statement line remains unchanged).

The editor is automatically invoked when an error is found in
a line after you type RETURN. This may be disabled using the
ERROR command, see section 3.4.

3.3 Saving and Loading Basic Programs

Having entered your program as explained in the previous
sections, you may want to save it on an audio cassette. To do
this, a cassette recorder should be connected to the DIN
socket on the back of the computer. This should go to input
and output connections on the recorder which are usually
labeled MIC and EAR respectively.

The remote start switch of the recorder, if it has one, may
also be connected. The computer will then turn the recorder
off and on as required. If you do not have this connected,
you will have to do this yourself.

To save the current program, type:

SAVE "name"

The name is whatever you wish to call the program. It must
not be more than 8 characters long, and must be in quotes
(single or double). The computer will respond:

Auto-run ? (Y/N)

If you answer "Y", then the program will run as soon as it is
reloaded. If you do not require this, type "N". This facility
is normally used for finished programs. If the program is
still under development, auto run is not normally specified.

3-3

The next prompt is:

Cassette ready? (Y/N)

Check that the recorder is set to record and ready to go.
Answer "Y". If you have the remote start switch connected,
the computer will turn on the recorder.

The program will now be saved.

When the operation is complete, the computer will print:

*Ready

Note that your program in memory is not affected by this
operation; a copy is sent to the tape.

To load a program previously saved on an audio cassette, the
command is:

LOAD "name"

For name, fill in the name you specified when SAVEing. Don't
forget the quotes. The computer will respond:

Cassette ready? (Y/N)

Check that the recorder is set to play and ready to go. If
you have the remote start switch connected, the computer will
turn on the recorder. CORTEX will search the tape for a
program of the name you have asked for. It will print the
names of any others it finds on the way.

When the load is complete, the message:

*Ready

will appear. If your program is not found, press ESCAPE and
check the tape was in the right place and the name was spelt
correctly. More information on LOAD and SAVE is given in
section 4.

3-4

3.4 Saving and Loading in Source Format

An alternative method for cassette storage is what is known
as Source format. The program is stored on tape exactly as it
is written. To use this method type:

BAUD 3,300
UNIT 3

The first command sets up the data transfer speed for device
number 3 (the cassette recorder). The second turns on device
3. This means that everything that appears on the screen is
copied to the tape. Now type:

LIST

Before pressing "RETURN" turn on the tape recorder and wait
for 2 or 3 seconds to put a leader on the tape. When you
press the return key the listing of your program is copied to
the tape. When finished, type:

UNIT -3

to turn the copying off again.

To load a program in source format, type, as before,

BAUD 3,300

The system now expects input from the cassette. Turn the
recorder to play and the listing will be copied back just as
if you were typing from the keyboard (only faster!).

NOTE: You may find it more reliable to type the BAUD command
as above but not press the RETURN key until the tape has
reached the steady tone of the 2 or 3 second leader. This
avoids random noise on the tape producing random characters.

Although source storage is much slower than LOAD and SAVE, it
does allow parts of programs to be saved. This is achieved by
only listing part of the program.

3-5

Since tape input is treated by the Cortex as though you were
typing it in, if a tape error occurs Cortex will stop
accepting lines and present the incorrect line for you to
edit. This is a useful check that all lines have loaded
correctly.

However if you have a tape with errors, you can load all
correct lines by turning off the error editing. This is done
by typing the ERROR command. Any lines with errors will be
ignored. Typing ERROR again turns the error checking back on.

Programs may also be merged. Loading in source format is just
like typing at the keyboard. If we have two programs, one
from line 10 to 100 and the other from 200 to 500, loading
both one after the other in source format produces a program
stretching from 10 to 500.

This method is also used to transfer listings to and from the
RS232C interface (or any other device you have added). Simply
change the unit number you use. RS232C is unit 2.

The UNIT command may be used to store data files on tape.
See UNIT, PRINT and INPUT in section 4.2.7.

3-6

4. BASIC REFERENCE GUIDE

This section gives a full explanation of every BASIC keyword.

Keywords are divided into 3 types:

Commands may only be entered for immediate action, they
may not be used in a program.

E.g.: RUN, LIST

Statements may be used as part of a program or for
immediate execution. They normally have some parameters
which follow the statement.

E.g.: PLOT 1,2 TO 10,10

Functions produce a single value answer. They are used
on the right hand side of an equals sign to assign a
value to a variable. They may have arguments (in
brackets) following the function.

E.g.: A=SIN(1.2)

The keywords in this section are arranged in order of these
categories. Within each category they are grouped according
to the type of action they perform, such as mathematical or
graphical. Appendix A gives an alphabetical list of the
keywords and appendix B a list by function. These may be used
as references to this section.

4-1

The following conventions are used to show the forms of
keywords:

Numeric values for command parameters are decimal
unless otherwise specified.

Angle brackets, <> , indicate essential elements
supplied by the user:

10 LET <variable> = <expression>

Braces, {} , indicate a choice between alternatives,
one of which must be included:

10 ON { variable } THEN GOSUB <statement number list>

{ expression }

Brackets, [] , enclose optional items:

10 [LET] A=4*ATN(1)

Items in capitals are entered exactly as shown.

Items in lower case are supplied by the user.

4-2

4.1 BASIC COMMANDS

The commands:

4.1.1 NEW

4.1.2 SIZE

4.1.3 LOAD

4.1.4 SAVE

4.1.5 LIST

4.1.6 RUN

4.1.7 CONT

4.1.8 NUMBER

4.1.9 RENUM

4.1.10 PURGE

4.1.11 MON

4.1.12 BOOT

4.1.13 ERROR

4-3

4.1.1 NEW

Forms:

NEW
NEW <address>

The NEW command without an address deletes the current BASIC
program and clears all variable space. BASIC responds with
"*Ready" and awaits entry of new BASIC programs. The deleted
program may be retrieved later if it has been SAVEd.

The memory freed for the new BASIC program starts 1000 bytes
above the system software. This leaves 1000 bytes of RAM
which are completely unused by BASIC. This may be used for
assembly language routines CALLed from BASIC. These may be
written using the MONitor. The start of this area is obtained
by using the "SYS(7)" function (see section 4).

The form of the NEW command with an address parameter is used
to vary the amount of RAM left unused by BASIC. The address
is used as the start point for BASIC programs. Typing:

NEW SYS(7)

will leave no unused RAM, and increases the amount available
to BASIC by 1000 bytes.

NEW 7000H

means that memory from the address given by "SYS(7)" to 6FFFH
is free for assembly language use. The memory available to
BASIC is correspondingly reduced. An address of less than
"SYS(7)" or greater than 0E800H should not be used.

After using the NEW commend with an address, that address
becomes the new default value for NEW without a parameter.

Note: The value of "SYS(7)" is currently around 6100H. Future
releases of BASIC may use some of the memory up to 6200H. To
ensure compatibility some future releases it is recommended
that assembly language programs start from an address above
6200H, or are written position independent and loaded at
"SYS(7)".

4-4

4.1.2 SIZE

Form:

SIZE

The SIZE command prints out to all currently selected output
devices the amount of memory taken by the current BASIC
program and its variables. The amount of remaining user
memory is also printed.

Note: If no user program is currently in memory there will
still be a program size. This is the program overhead and is
always present. The overhead size is included in the program
size so that if the program is burnt into EPROM the user will
be able to tell how many EPROMs are required.

EXAMPLE:

SIZE
PRGM: 10 Bytes
VARS: 0 Bytes
FREE: 34432 Bytes

4-5

4.1.3 LOAD

Forms:

LOAD "<filename>"
LOAD

The LOAD command is used to load BASIC or machine code
programs from audio cassette. The filename is up to 8
characters and is used to identify the program on the
cassette. BASIC responds with:

Cassette ready (Y/N)

The tape recorder should be connected and set to play. Type
"Y" in answer to the question. If the remote start socket on
the tape recorder is connected, BASIC will start the tape and
search it for the specified filename. Any other programs
found will be reported:

Found "program"

until the specified filename is found. When the load is
complete, BASIC will print "*Ready". If the program was SAVEd
with auto run, the program will run as soon as the load is
complete.

A checksum error during loading will produce the message:

** Tape read error **

and the load is aborted.

The LOAD command with no filename will list the files on the
tape. No program is loaded.

To get out of the load command, for example if the filename
is not found, press the ESCAPE key.

EXAMPLE:

LOAD "DEMO"
Cassette ready? (Y/N) Y
Found "PROG1"
Found "DEMO"

*Ready

4-6

4.1.4 SAVE

Form:

SAVE "<filename>"

The SAVE command is used to store programs on audio cassette
tape. The filename is up to eight characters and is used to
identify the program on the tape. BASIC responds with:

Auto-Run ? (Y /N)

For a normal save of a program type "N". The program can then
be reloaded using the LOAD command. If "Y" is used, the auto
run flag is set in the header block for the program. This
means that when it is reloaded using LOAD, it will run as
soon as the load is complete without having to type RUN.

The next prompt is:

Cassette ready? (Y /N)

The tape recorder should be connected and set to record. If
the remote socket on the tape recorder is connected, BASIC
will turn on the tape and save the program. When the
operation on complete, the "*Ready" message w111 be printed.

EXAMPLE:

SAVE "DEMO" •
Auto-Run ? (Y/N) N
Cassette ready? (Y/N) Y
*Ready

4-7

Cassette data is dumped as a memory image at 300 baud. The
format is shown in the table.

 TAPE SAVE FORMAT

|-----------------|
| SYNC CHAR (16H) | Repeated for two second startup
|-----------------|
| STX CHAR (02H) | Start of data
|-----------------|
| HEADER BLOCK | See below
|-----------------|
MEMORY IMAGE
ETX CHAR (03H)

CHECKSUM

 HEADER BLOCK

|-----------------| RUN =>A5A5
| AUTO RUN FLAG | NORUN =>5A5A
|-----------------|
| 8 BYTE NAME | Null filled when name is
|-----------------| less than 8 characters long
| POINTER 1 |
|-----------------| The pointers are used to
| POINTER 2 | initialize the BASIC program
|-----------------| when it is loaded
POINTER 3
LOAD LENGTH

CHECKSUM

4-8

4.1.5 LIST

Forms:

LIST
LIST <line number>
LIST <line number> TO <line number>
LIST TO <line number>

The LIST command displays all or any portion of the current
program. Entering only LIST lists the entire program.

Entering a line number displays just that line. Entering two
numbers separated by TO displays all lines between and
including those specified. Omitting the first line number in
this form displays from the start of the program to the
specified line number.

A listing may be halted by pressing the space-bar.
Successively pressing the space bar will step the listing one
line at a time. Pressing RETURN resumes the listing.

To end a listing before it is complete press ESCAPE.

A listing may be sent to other devices by using the UNIT
statement. The listing will always proceed at the speed of
the slowest device enabled.

EXAMPLES:

LIST 100 TO 3000
LIST TO 500

4-9

4.1.6 RUN

Form:

RUN

The RUN command clears all variable space, pointers and
stacks. The random number seed is set to 0 and then the
current BASIC program is executed from the lowest line
number.

4.1.7 CONT

Form:

CONTinue

The CONTINUE command transfers control to the next statement
of the BASIC program. (The RUN command always starts at the
first line.)

When the RUN command is entered, program execution begins at
the first line and continues until a break condition occurs.
The CONTINUE command may be used to continue execution after
a break.

The program will stop or break when the user enters the
ESCape key during program execution, a STOP or END statement
is encountered, or an error occurs within the program.

If execution was halted by an error or the 'escape' key, then
the interrupted line will be re-executed by "CONTINUE". If
execution was halted by a "STOP" statement, "CONTINUE" will
execute the following line. It is not possible to "CONTINUE"
past an "END" statement.

4-10

4.1.8 NUMBER

Forms:

NUMBER
NUMBER <line number>
NUMBER <line number>,<increment>

The NUMBER command allows entry of BASIC programs without
having to type in the line numbers. The user is prompted with
the next line number each time a line is completed. Entering
just the command will start lines at 100 with an increment of
10. The second form allows the user to choose the start line
number and the third form allows the user to choose the
increment between lines.

Each line is terminated by RETURN, producing the next line
number. If RETURN is pressed without entering a statement,
the NUMBER mode is terminated.

EXAMPLE:

NUMBER 200,20
200 <enter your line here - end with RETURN>
220 <and so on>
...
...
380 <press RETURN ONLY to finish entering>

4-11

4.1.9 RENUM

Form:

RENUM [new start line number] STEP [new increment]

The RENUM command renumbers the current BASIC program. On
completion, the first line is changed to that specified with
the difference between adjacent lines equal to the new
increment. All references to line numbers within the program
are changed so that they refer to the new line numbers (e.g.,
GOTOs, GOSUBs).

If the increment is omitted, 10 is used. If the new start
line number is omitted, 10 is also used for this.

EXAMPLE:

Given the program:

10 REM THIS IS A DEMO PROGRAM
17 PRINT "TESTING"
21 GOTO 17

RENUM 100 STEP 20

LIST

100 REM THIS IS A DEMO PROGRAM
120 PRINT "TESTING"
140 GOTO 120

The command is implemented using a two-pass approach. On the
first pass the command determines how much free memory exists
in the system and where it is. This area of memory is then
used to build a table of line number references. The whole
program is scanned and every time a line number is
encountered within the program an entry is added to this
table. Each table entry consists of the line number and the
address in program memory where it was found. If there is
insufficient free memory to complete this table then the
table area is reset to its original state, the error message
'**Out of memory**' is output and the RENUMber command is
abandoned.

However, if the first pass is completed successfully, (there
was sufficient memory) then, and only then, is the second
pass executed. This approach ensures the integrity of the
stored program. It cannot get corrupted due to starting to
renumber the program and not being able to complete the
operation.

4-12

If there are any line numbers in the form of expressions
(e.g., ERROR A), this is detected by the first pass. It is
not possible to update these references automatically so the
following warning message is output:

Problem with new line xx

where "xx" is the line containing the unconverted reference.

When the renumbering is complete, check the line(s) indicated
and convert the statement references by hand. All other
references will be converted correctly.

In the second pass each line number entry in the table is
checked to determine whether or not the line it refers to
exists. If it does, that line's new value is used to update
the memory locations that refer to the line. When a line that
does not exist is referred to then the following message is
output:

Bad Line No.(xx) in new line yy

where "xx" is the line that does not exist.

"yy" is the line with the reference to "xx".

When all table entries have been completed the free memory
area is put back to its original state and the Cortex is
ready for more commands.

If the SIZE command is executed immediately before and then
straight after executing the RENUM command, there may be a
slight difference between the two program sizes shown. This
is nothing to worry about; it is the result of internal
reorganization and does not affect the operation of the
stored program.

If the program to be renumbered is very large or requires a
vast amount of data storage (for instance, very large arrays)
then it is possible that the command will fail due to the
limited amount of temporary storage space available.
This may be increased by entering line 1 as STOP. Then type
RUN. This will clear the arrays. If there is still
insufficient space, the following will clear all variables:

o SAVE the program.
o Execute the NEW command.
o LOAD the program.
o Re-issue the RENUM command.

For an extremely large program, it will have to be saved on
tape in parts using source format and renumbered in parts.
References between these parts must be converted by hand.

4-13

4.1.10 PURGE

Form:

PURGE <start line number> TO <end line number>

The PURGE command deletes lines from the current BASIC
program from the start line to the end line inclusive.

4.1.11 MON

Form:

MON

The MON command executes the assembly language/machine code
monitor. Section 7 is the reference guide for the monitor.
Once in the monitor, the prompt "[]" is displayed. A "G"
command will return to BASIC.

4-14

4.1.12 BOOT

Form:

BOOT

NOTE: Do not use the BOOT command if you do not have floppy
discs.

The BOOT command loads the contents of track zero sector one
from floppy disc drive number zero and executes this as a
TMS9995 program. This program would normally be a secondary
boot for the software on the disc.

The disc format is compatible with IBM 3740 for single
density and IBM system 34 for double density.

TRACK ZERO HEADER FORMAT

Address 0 2 4 6 8 A C E
 |-----|-----|-----|-----|-----|-----|-----|-----|
00 | WP | PC | --- | --- | --- | --- | --- | --- |
 |-----|-----|-----|-----|-----|-----|-----|-----|
10 | --- | --- | LN | SA | --- | --- | --- | CS |
 |-----|-----|-----|-----|-----|-----|-----|-----|

WP = Entry Workspace pointer
PC = Entry Program counter
LN = 256 times number of sectors to transfer
SA = Load address for absolute code program
CS = Checksum on words hex00 to hex1C inclusive

The rest of the words in the header are not interpreted by
the BOOT command, but they are loaded into memory and may be
used to store other vectors.

The bytes to be transferred are stored sequentially after
this header block. This code is first loaded into a buffer
that is 1 Kilobyte long. Loading more than this will start to
overwrite BASIC, which or may not be desirable depending on
the application. The code, including the header block, is
then transferred to the load address given by SA.

The maximum amount of code that may be directly loaded by the
BOOT command is 1 track. Note that DMA transfers are not
possible above address F000 hex.

4-15

The LN word in the boot header is 256 times the number of
sectors to transfer. For single density discs with 128 bytes
per sector (IBM 3740 compatible) this means that LN is twice
the number of bytes transferred. For double density discs
with 256 bytes per sector (System 34 compatible) LN is
exactly the number of bytes transferred. Other values of
bytes per sector may be used by adjusting LN accordingly.

The type of disc for booting is determined by the size and
density jumpers on the CORTEX board. These should be set as
follows:

IN OUT

Size 5 inch 8 inch
Density Single Double

The bootstrap is always loaded from track zero, which is in
the same place for single or double sided discs. Therefore no
jumper is needed to select the number of sides.

Recording method is FM for single density and MFM for double
density.

For booting, the timing parameters for the discs are set to
the slow values shown below. This will allow booting from
most drives. After the bootstrap is loaded, it can then
access the floppy disc controller to optimize these settings
for the drives in use.

Initial timing settings

 5 inch 8 inch

Head step time 50mS 10mS
Head settle time 35mS 8mS
Head load time -- 35mS

4-16

4.1.13 ERROR

Form:

ERROR

When used in a program, ERROR is a statement to trap errors,
see section 4.2.5. When entered without a line number, ERROR
is a command.

Normally when a line is entered that has errors, Cortex will
print the line again and position the cursor for the error to
be corrected. The ERROR command turns off this feature. Any
lines with errors will be ignored. A subsequent ERROR command
turns the error editing back on.

The current state of error editing is returned by the SYS(8)
function. A value of 0 means error editing is on, -1 means
that it is off.

The ERROR command may be used to load all correct lines in
source format from a serial device where errors are
occurring. Normally, loading would stop at the first error.

4-17

4.2 BASIC STATEMENTS

4.2.1 Comments

4.2.2 Dimension declarations

4.2.3 Function definition

4.2.4 Assignment

4.2.5 Program control

4.2.6 Internal input

4.2.7 Input/output

4.2.8 Timing

4.2.9 Randomize

4.2.10 Program escape/noescape

4.2.11 External subroutines

4.2.12 Color graphics

4.2.13 Run time statement entry

4.2.14 Statement tracing

4-18

4.2.1 REM

Form:

<line number> REM <text>

The REM statement is used to insert remarks (comments) in a
program. REM may contain any textual information. It has no
effect when encountered in execution; however, its line
number may be used as the argument of a GOTO or GOSUB
statement. Tail remarks may also be inserted into a program
by separating the remark field from the statement field by an
exclamation point (!).

Examples:

10 REM THIS IS A COMMENT
100 REM CHECK FOR X=0

4-19

4.2.2 DIM

Dimension declarations are used to specify the size
attributes for subscripted variables within the program.

Form:

<line number> DIM <var(dim[,dim]...) [,....]>
 DIM <var(dim[,dim]...) [,....]>

The DIM statement dynamically allocates user variable space
for array variables. Dimensioned (array) variables must be
declared by the DIM statement before the variables are used.
Once dimensioned, attempts to redimension an array variable
to a larger array size will result in an error message, and
attempts to redimension to a smaller size will be
disregarded.

Array sizes are specified by indicating the maximum subscript
values in parentheses following the array name. Subscripts of
dimensioned variables may be any numeric quantity including
constants, simple variables, other dimensioned variables, or
even function calls. If a floating point value 1s returned
for the subscript value, only the integer portion will be
used in the dimension statement. The number of dimensions and
the dimension size for the array declaration is limited only
by the user’s available memory. An error will occur if the
dimensioned variable requires more variable space than is
currently available in the user's partition. Dimensioned
variables always use the 0 subscript as the first element in
the array.

Examples:

10 DIM A(10),B(10,20)
100 DIM A1(10),B1(20,30),B15(10,10,10)
 DIM CAT(C,D),DOG(SQR(N),3,P)

The first statement allows for the entry of an array of 11
elements (0-10) into A, and of an array of 11 x 21 elements
into the two dimensional array, B. The two remaining
statements dimension arrays in a similar manner.

4-20

String variables are also dimensioned using the DIM
statement. The "$" sign is used to signify that the variable
is being used to store a string. A "$" is not required in the
DIM statement but it is useful to include it for your own
reference.

Examples:

20 DIM $CAT(l0),$DOG(8)

Strings are stored one character per byte with a null
character used to terminate the string. Hence, simple string
variables and single array elements (which are 6 bytes in
length) can contain up to five characters. String arrays can
contain up to the number of elements times 6 minus 1
character. Therefore, the string array $CAT can contain up to
65 characters. Section 6 gives more information about
character strings.

4-21

4.2.3 DEF

The DEF statement defines a user function. The defined
functions are executed only when the function is referenced.

Forms:

<line number> DEF FN <letter> = <expression>

<line number> DEF FN <letter> (parm1[,parm2][,parm3]) = <expression>

where:

parameters are single alphabetic letter dummy variables
expression is any valid POWER BASIC expression

The DEF statement may appear anywhere within a BASIC program
and the defined functions may be used in any expression. That
is, once defined, the functions may be used in the same way
as the built-in mathematical functions explained in Section
7. When the function is referenced, the expression is
evaluated end the parameters, if any, are replaced by the
arguments given in the reference. Within the expression the
parameters may appear only as numeric variables. The user may
define functions using up to three dummy parameters. All
(dummy) parameters may only be single character variables in
the function definition. However, when calling the function
the user may use any valid POWER BASIC variable (either
simple or dimensioned) to replace the dummy variables of the
called function.

The expression may include any combination of intricate
functions, other user-defined functions, or may involve any
other variables in addition to the ones used in the argument
of the calling function. Parameter names are dummy (local)
variables of the defined function, and have no meaning
outside of the function definition.

The use of the DEF statement is limited to those functions
whose expression may be evaluated within a single BASIC
statement.

The name of the defined function must be three letters, the
first two of which must be FN followed by a single letter;
e.g., functions FNA through FNZ may be defined by the user.
The same letter which defined the function may also be used
as a parameter of the function as shown below.

Example:

20 DEF FNA(X,Y)=X/Y+5
30 DEF FNB = A/B + C-15
40 DEF FNC(I,J) = I*K/J + FNB - FNA(I,J)
50 DEF FND(N) = N*N/2
60 DEF FNI(I,J) = I*J/SQR(I)

4-22

4.2.4 LET

The LET statement assigns a value to a variable where the
variable is set equal to an expression consisting of
variables and/or constants separated by operators. The
variable being evaluated may appear within the expression.
The newly calculated value of the variable replaces the old
value.

In POWER BASIC the letters LET may be omitted from the
statement so only an equation appears. The LET statement may
have either of the following forms:

<line number> LET <variable> = <expression>
 LET <variable> = <expression>
<line number> <variable> = <expression>
 <variable> = <expression>

where

variable is a string variable, numeric scalar variable,
or array element.

The assignment statement assigns an expression value to a
variable. Both variable and the expression must be either
string or numeric. The following examples illustrate the
assignment statement. Note that this is not a meaningful
POWER BASIC program.

 A=5
 B=10
 LET C=A+B
10 LET X=1
20 LET $A(2)=$C+"NOW"
30 LET Q2(L)=Q2(L+1)+3
40 LET H=6
50 D=5
60 F=A/B+3
100 LET Z[I,J]= 3*X-4*Y
120 $AB="STOP"

4-23

4.2.5 Control Statements

4.2.5.1 GOTO

When the computer encounters a GOTO statement, it jumps to
the program line number specified in the statement. The
program executes the statement at the specified line number
and continues in sequence with the statements that follow.

Form:

<line number> GOTO <line number>
 GOTO <line number>

The "GOTO" statement must be entered without any embedded
blanks. If the GOTO statement is not preceded by a line
number, program execution begins at the line number specified
immediately after the GOTO statement.

Examples:

 GOTO 200 Begins execution at statement 200
100 GOTO 140 Transfers control to statement 140

The following program illustrates the GOTO Statement:

20 INPUT A
30 GOTO 50
40 STOP
50 PRINT A
60 GOTO 40

The program execution sequence is line numbers 20, 30, 50, 60
and 40 where execution stops.

4-24

4.2.5.2 IF-THEN

IF-THEN statement. The IF statement alters sequential
execution of the program depending on the state of the
specified condition.

Forms:

 <ln> IF <expression> THEN <BASIC statement(s)>
 IF <expression> THEN <BASIC statement(s)>
 <ln> IF <expression><relation><expression> THEN <BASIC statement(s)>
 IF <expression><relation><expression> THEN <BASIC statement(s)>
 <ln> IF <string><relation><string> THEN <BASIC statement(s)>
 IF <string><relation><string> THEN <BASIC statement(s)>
 <ln> IF <string> THEN <BASIC statement(s)>
 IF <string> THEN <BASIC statement(s)>
 <ln> IF <string><relation><string><,expression> THEN <BASIC statement(s)>
 IF <string><relation><string><,expression> THEN <BASIC statement(s)>

The condition may be any variable, numeric expression,
relational expression, logical expression, string variable,
string relational expression, or function which can evaluate
to a zero or non-zero value. Two expressions or strings are
compared according to the given relation and a true or false
condition results. If the second string is followed by a
comma, the expression following the comma indicates the
number of characters to be compared. If only a single
expression or string is given, the condition is considered
false if the expression is zero or the string is null;
otherwise, it is considered true.

If the condition is true, the statement(s) following the THEN
clause on the same line will be executed. If the condition is
false, the statement on the line following the IF-THEN
statement will be the next statement executed. Any POWER
BASIC statement or statements (including GOTO's and other IF-
THEN statements) may immediately follow the THEN clause. They
cannot extend to the next statement line because statement
execution continues at the next statement line when a false
condition occurs. The IF and THEN clauses must appear on the
same statement line.

Examples:

20 IF A=0 THEN GOTO 100
30 IF SQR(J) =4 THEN K=J*J/I::PRINT J,K
AO IF I+2 THEN PRINT I
50 IF $A=$B THEN PRINT $A
60 IF $A THEN $B=$A
70 IF $A=$B,3 THEN GOTO 200 (compares first three
 characters of $A and $B)

4-25

4.2.5.3 ELSE

ELSE statement. The ELSE statement enables conditional
execution of POWER BASIC statements depending upon the true
or false condition of the last executed IF statement.

Form:

<line number) ELSE <BASIC statement)

IF-THEN statements set the ELSE flag to indicate the true or
false condition of the last executed IF-THEN statement.
Subsequent ELSE statements use the ELSE flag to determine
whether the statement(s) following the ELSE are to be
executed. When the IF condition is true, the THEN clause will
be executed and all subsequent ELSE statements will not be
executed. When the IF condition is false, the THEN clause
will not be executed and all subsequent ELSE statements will
be executed. The ELSE statement must not be placed on the
same statement line as the preceding IF-THEN statement
because when the IF condition is false, no further statements
on the IF-THEN line will be executed and execution will
continue with the next statement line. The ELSE flag remains
set to the true or false condition until the next IF-THEN
statement is executed at which time the flag is cleared and
set to the new true or false condition. Several ELSE
statements may appear between each IF-THEN statement, and
each of these will be executed between each IF-THEN
statement; they will be executed when they are encountered if
the last executed IF-THEN statement resulted in a false
condition. If a true condition resulted, each of these
statements will be skipped. An ELSE statement always uses the
last IF statement executed as its reference regardless of
where it physically lies within the POWER BASIC Program. This
enables blocks of statements to be conditionally executed or
skipped.

Example:

The following program computes the function and prints the
result:

Statement of function:

for X<1, f=ABS(X),
for 1< =X<2, f=SQR(X),
for 2< =X, f=ABS(X)-SQR(X)

Program solution:

10 IF X<1 THEN F=ABS(X)
20 ELSE IF X<2 THEN F=SQR(X)
30 ELSE F=ABS(X)-SQR(X)
60 PRINT X,F

4-26

4.2.5.4 GOSUB, POP, RETURN

BASIC programs may contain internal BASIC subroutines. An
internal subroutine is a sequence of BASIC statements
performing a well-defined function or operation within the
POWER BASIC program. Three types of statements govern access
to a subroutine: a GOSUB statement for entry into the
subroutine, a POP statement for exiting nested subroutines,
and a RETURN statement for return to the calling program.

Forms:

<line number> GOSUB <line number>
<line number> POP
<line number> RETURN

An internal POWER BASIC subroutine may be invoked from any
point within the program by using a G0SUB statement which
specifies the entry point of the subroutine as a line number.

 | 10 X = 2
 |
+--+ 20 GOSUB 90
|
| 30 X = X+Z ◄--+
▼ |
| |
| |
| |
+--► 90 Z = 2*X-1 ▲
 |
 100 X = X/Z |
 |
 110 RETURN --+

FIGURE 5-1. GOSUB Example

Execution of the GOSUB statement pushes the address of the
statement immediately following the GOSUB statement onto the
GOSUB stack for return, and passes execution to the specified
line number.

4-27

A RETURN statement placed in the subroutine is an exit point
from the internal POWER BASIC subroutine. A RETURN statement
should be placed at each logical end of all subroutines. The
RETURN statement causes execution to resume at the first
statement following the GOSUB statement that transferred to
the subroutine. During this transfer, the top return address
is removed from the GOSUB stack. All subroutines should be
exited only via a RETURN statement so the top return address
will always be removed from the GOSUB stack. Unpredictable
results occur if a subroutine is exited in any other fashion.

In Figure 5-1 GOSUB 90 involves statements on line numbers 90
(start of subroutine), 100, and 110 (end of subroutine). If a
GOSUB statement is used, the subroutine it branches to must
contain at least one RETURN statement. The example
illustrates the simplest use of GOSUB and RETURN. The arrows
indicate the flow of control in the program.

Subroutines may be nested by a subroutine containing a call
to another subroutine (the inner subroutine is called a
nested subroutine).

Subroutines may be nested up to 20 levels.

A return address (first line number after the call) must be
stored for each GOSUB statement until that statement is
executed. The program in the following example contains
nested subroutines and shows the actual execution sequence.
Each GOSUB to a subroutine must be accompanied by at least
one RETURN statement per exit path. The nested program and
execution sequence of the example demonstrate entry to and
exit from a subroutine.

4-28

LIST

10 PRINT "ROOTS OF QUADRATIC EQUATIONS"
20 PRINT
30 REM - ENTER COEFFICIENTS A,B,C OF A*X*X+B*X+C
40 INPUT "COEFFICIENTS A= ";A;" B= ";B;" C= ";C
50 GOSUB 100
60 REM - RESTART OR END PROGRAM?
70 INPUT "MORE DATA (1=YES, 0=NO)? "%1;N
80 IF N<>0 THEN GOTO 20
90 STOP

100 REM - CALCULATE S=B*B-4*A*C
110 S=B^2-4*A*C
120 REM - COMPLEX ROOTS?
130 IF S<0 THEN GOSUB 200 !COMPLEX ROOTS
140 ELSE GOSUB 300 !REAL ROOTS
150 PRINT !OUTPUT BLANK LINE
160 RETURN

200 REM - CALCULATE COMPLEX ROOTS
210 Q=SQR(ABS(S))
220 R1=-B/(2*A) !REAL PART
230 R2=Q/(2*A) !IMAGINARY PART
240 PRINT "ROOTS (COMPLEX): ";R1;" + OR -";R2;" I"
250 RETURN

300 REM - CALCULATE REAL ROOTS
310 IF S=0 THEN Q=0
320 ELSE Q=SQR(S)
330 R1=(-B-Q)/(2*A) !ROOT 1
340 R2=(-B+Q)/(2*A) !ROOT 2
350 PRINT "ROOTS (REAL): ";R1;", ";R2
360 RETURN

would Produce the following results:

RUN

ROOTS OF QUADRATIC EQUATIONS

COEFFICIENTS A= 2 B= 1 C= -1
ROOTS (REAL): -1, 0.5

MORE DATA (1=YES, 0=NO)? 1

COEFFICIENTS A= 1 B= 4 C= 6
ROOTS (COMPLEX): -2 + OR - 1.414214 I

MORE DATA (1=YES, 0=N0)? 0

STOP AT 90

4-29

The following example shows the execution sequence of the
previous example. Note that all returns are performed via
RETURN statements.

Execution sequence:

 10 PRINT "ROOTS OF QUADRATIC EQUATIONS"
 20 PRINT
 30 REM - ENTER COEFFICIENTS A,B,C OF A*X*X+B*X+C
 40 INPUT "COEFFICIENTS A= ";A;" B= ";B;" C= ";C
 50 GOSUB 100

100 REM - CALCULATE S= B*B-4*A*C
110 S= B^2-4*A*C
120 REM - COMPLEX ROOTS?
130 IF S<0 THEN GOSUB 200 !COMPLEX ROOTS
140 ELSE GOSUB 300 !REAL ROOTS

300 REM - CALCULATE REAL ROOTS
310 IF S=0 THEM Q=0
320 ELSE Q=SQR(S)
330 R1= (-B-Q)/(2*A) !ROOT 1
340 R2= (-B+Q)/(2*A) !ROOT 2
350 PRINT "ROOTS (REAL): ";R1;" , ";R2
360 RETURN

150 PRINT !OUTPUT BLANK LINE
160 RETURN

60 REM - RESTART OR END PROGRAM?
70 INPUT "MORE DATA (1=YES, 0=NO)? "%1;N
8O IF N<>0 THEN G0TO 20
20 PRINT
30 REM - ENTER COEFFICIENTS A,B,C OF A*X*X+B*X+C
40 INPUT "COEFFICIENTS A= ";A;" B= ";B;" C= ";C
50 GOSUB 100

100 REM - CALCULATE S= B*B – 4*A*C
110 S=B^2-4*A*C
120 REM - COMPLEX ROOTS?
130 IF S<0 THEN GOSUB 200 !COMPLEX ROOTS

200 REM - CALCULATE COMPLEX ROOTS
210 Q= SQR(ABS(S))
220 R1= -B/(2*A) !REAL PART
230 R2= Q/(2*A) !IMAGINARY PART
240 PRINT "ROOTS (COMPLEX): ";R1;" + OR -"R2;" I"

150 PRINT !OUTPUT BLANK LINE
160 RETURN

 60 REM - RESTART OR END PROGRAM?
 70 INPUT "MORE DATA (1=YES, 0=NO)? "%1;N
 80 IF N<>0 THEN 00TO 20
 90 STOP

4-30

A RETURN statement must not be encountered unless a GOSUB
statement has been executed.

"Remembering" all the return points by saving them on the
GOSUB stack and never removing them can exhaust the available
GOSUB stack area. The following program, which calculates N!
illustrates this problem; its use requires that N return
points be remembered.

10 INPUT "N= ";N
20 GOSUB 100
30 PRINT N,N1
40 STOP

100 N3=N
110 N2=0
120 N1=1
130 GOTO 160
140 N3=N3-1
150 GOSUB 160
160 IF N3>1 THEN GOTO 140
170 N2=N2+1
1E0 N1=N1*N2
190 RETURN

The POP statement removes the top most previous return
address from the GOSUB stack. It does not perform a return
transfer to the calling routines. Execution continues at the
statement following the POP statement in the internal
subroutine. The POP statement is useful for exiting nested
subroutines as the following example demonstrates.

4-31

 10 REM - MAIN PROGRAM
 20 GOSUB 100 ! CALL GET DATA
 30
 "
 "
 "
 "
 "
100 REM - ! SUBROUTINE GET DATA
110 GOSUB 200 ! CALL GET NUMBER
120
 "
 "
 "
 "
 "
190 GOTO 100 ! GET NEXT DATA SEQUENCE
200 REM - SUBROUTINE GET NUMBER
210
 "
 "
 "
 "
 "
250 REM - NUMBER FOUND?
260 IF NUM THEN RETURN ! IF NUMBER - RETURN
270 REM - NO MORE NUMBERS
280 POP ! REMOVE MOST RECENT RETURN ADDRESS
290 RETURN

In this example, the main program calls subroutine 100 which
in turn calls subroutine 200 until there is no more data.
Subroutine 200 exits with a RETURN when data is found; a POP
then RETURN when there is no more data. Program execution
then continues at line 30.

4-32

4.2.5.5 ON

 <variable> GOTO

<line number> ON{ or }THEN{ or }<line number>,<line number>,..
 <expression> GOSUB

 <variable> GOTO

 ON{ or }THEN{ or }<line number>,<line number>,..
 <expression> GOSUB

ON statements select the target transfer line number of a
GOTO or a GOSUB from a list of statement numbers. The
statement number list contains a statement number for each
expected value of the expression or variable. The selection
is based on the value of the expression or variable truncated
to an integer. If the expression value is 1, the first line
number in the list is selected. If the value is 2, the second
will be executed, and so forth. The GOTO or GOSUB statement
will be executed, transferring control to that line. If the
expression value is less than one or greater than the number
of statement numbers in the list, the transfer is not made
and execution simply continues with the next statement.

Examples:

10 ON J+1 THEN GOTO 15, 20, 35, 46, 70

When J is equal to 3, J+1 is equal to 4, and the fourth
statement number (46) is executed next. Similarly, J values
of 0, 1, 2, and 4 result in jumps to statement numbers 15,
20, 35, and 70, respectively.

110 ON X+3 THEN GOSUB 20, 40, 80, 300
120 ON (A+5)/Z THEN GOTO 10, 30

When X is equal to -1, the second statement number (40) is
executed next. When X is less than -2 or greater than +1, a
transfer is not made and line 120 will be the next statement
executed. When (A+5)/Z is equal to 2, the second statement
number (30) is executed next and so forth. If the expression
evaluates to a non-integer value, only the integer part is
used to determine the appropriate branch point.

4-33

4.2.5.6 FOR/NEXT

FOR and NEXT statements indicate the start and end of an
instruction block that is to be repeatedly executed as a set.
One variable takes on different values within a specified
range; this variable is often used in the computation or
evaluation contained in the instruction block. The FOR
statement names the variable and stepping values of that
variable and also specifies its initial and final values. The
NEXT statement closes the program loop.

The FOR statement may have either of the following forms:

<ln> FOR <variable> = <expression> TO <expression>
 FOR <variable> = <expression> TO <expression>
<ln> FOR <variable> = <expression> TO <expression> STEP <expression>
 FOR <variable> = <expression> TO <expression> STEP <expression>

where

variable is a simple numeric scalar variable
expression is a valid POWER BASIC numeric expression

The NEXT statement has the form:

<line number) NEXT <variable)
 NEXT <variable)

where

variable is a simple numeric variable

4-34

The simple variable of the NEXT statement must be the same as
the FOR statement variable at the beginning of the loop.

Specification of the STEP value is optional and usually
omitted. If omitted, a value of +1 is used. The step value
may be any constant, variable, or expression which evaluates
to a positive or negative value. Negative step intervals can
be used to decrease the value of the FOR variable from one
pass through the loop to the next. By using a step value of
-1, the FOR variable can be made to decrease by integer
values during successive loop interactions.

Examples:

100 FOR X=0 TO 3 STEP D
200 NEXT X
300 FOR X4=(17+COS(Z))/3 TO 3*SQR(10) STEP 1/4
400 NEXT X4
500 FOR X=8 TO 3 STEP -1
600 FOR J=-3 TO 12 STEP 2
700 NEXT J
800 NEXT X

Note that the step size may be a variable (D), an expression
(1/4), a negative number (-1), or a positive number (2). In
the example with lines 300 and 400, successive values of X4
will be .25 apart in increasing order. In the next example,
the successive values of X iterations through the loop, J
will take on values -3, -1, 1, 3, 5, 7, 9, and 11.

IF expressions are used to specify the initial, final or
step-size values, they will be evaluated only once when the
FOR loop is entered. Changing any of the values (either the
step, initial or final values) within the FOR loop does not
affect the number of times the sequence is executed with the
exception of the control variable. The control variable is
assigned to the initial values when the FOR statement is
entered and is incremented (if the STEP value is positive),
or decremented (if the STEP value is negative) after each
repetition of the loop sequence. The last repetition of the
loop sequence is when the control variable is equal to the
final value. When exiting the loop in this manner, the
control variable is incremented (or decremented) one step
value beyond the final value.

A pre-check is performed so that if the initial value is
greater than the final value in the case of positive STEP
values, the loop sequence will not be executed. Likewise, if
the initial value is less than the final value and the STEP
value is negative, the loop sequence will not be executed.

The control variable may be changed within the body of the
loop and the latest value of the variable will be used in the
exit test;

4-35

however, this programming practice is not recommended.

The statement "50 FOR I=2 TO -1" without a negative step size
results in the body of the loop not being executed, and
execution proceeds to the statement immediately following the
corresponding NEXT statement. The NEXT statement must be the
first item in a line for this feature to work properly.

The loop continues to be executed as long as the condition:

(step value)*(control variable)<(step value)*(end value)

remains true. If the condition:

(step value)*(start value)>(step value)*(end value)

is true when the FOR statement is first encountered, the loop
will not be executed.

When the loop is being executed, the control variable is
first set to the initial value and if the end criterion is
not true, the loop is executed. The control variable is then
incremented by the step value each time the NEXT statement is
encountered and executed. The loop terminates with the
control variable equal to the last value used in the loop
plus the step value.

Example:

10 FOR I=1 TO 4 STEP 2
 .
 .
 .
80 NEXT I
90 PRINT "I=";I

RUN
I= 5

The NEXT statement closes the FOR loop. When it is
encountered, the step value is added to the control variable.
If the control variable has not gone beyond the end value,
control will be returned to the first statement following the
FOR which opened the loop. The control variable of the loop
to be closed must be specified by the NEXT statement. It is
possible to place the FOR and NEXT statements on the Basic
statement line; however, remember that statement lines are
autonomous. Therefore, this type of loop structure cannot be
interrupted by using the escape key since keyboard sampling
is performed only between statement lines.

Also, FOR/NEXT statements on a single line or in separate
statement lines will cause an error to result if, during the
initial pre-check,

4-36

the initial value has exceeded the final value. For example,

20 FOR I=10 TO 1::NEXT I

will result in an error

FOR loops may be nested; i.e., one FOR loop may contain
another which may contain a third, etc. If nested, however,
they should not use the same control variable. When two loops
are nested, one must be completely contained within the
other. Overlapping is not permitted. The following structure
is correct:

 10 FOR I=1 TO 2
 20 FOR J=1 TO 2
 30 FOR K=l TO 2
 .
 .
 .
 80 NEXT K
 90 NEXT J
100 NEXT I

while the next two structures are incorrect:

 10 FOR I=l TO 2
 20 FOR J=1 TO 2
 .
 .
 80 NEXT I
 90 NEXT J (WRONG, loops may not overlap)

 10 FOR I=1 TO 2
 20 FOR I=1 TO 2
 .
 .
 80 NEXT I
 90 NEXT I (WRONG, nested loops may not have the same
 control variable.)

The following program illustrates nesting:

LIST
10 REM AREA OF A TRIANGLE
20 FOR B=6 TO 9
30 FOR H=11 TO 13 STEP 0.5
40 A=B*H/2
50 PRINT B,H,A

4-37

 60 NEXT H
 70 NEXT B
 80 STOP

This program prints the base, height, and area of triangles
with bases 6, 7, 8 and 9, and heights 11, 11.5, 12, 12.5, and
13. All combinations are printed; 20 sets of data for the
four bases and five height values.

All values of the variable in the inner loop are cycled
through while the variable in the outer loop is set to its
first value. The outer loop variable is then set to its
second value and the inner loop is cycled through again. The
program runs through each outer loop value this way.

Nesting of FOR/NEXT loops is permitted to a level of 10.

It is legal to transfer control from within a loop to a
statement outside the loop, but it is never advisable to
transfer control into a loop from outside. The next two
examples illustrate both of these situations.

Valid transfer out of a loop:

20 FOR I=l TO N
30 X=X=2*I
60 IF X>1000 THEN GOTO 100
50 NEXT I

Invalid transfer into a loop:

20 GOTO 50
30 FOR I=l TO N
40 X=X*2*I
50 Y=Y+X/2
60 NEXT I
 .
 . (WRONG, 50 is inside a loop)
 .

However, it is permissible to call a subroutine from within a
loop and then return from the subroutine back into the loop.
The following example illustrates repetitive calling of a
subroutine from inside a loop.

4-38

Example:

 10 FOR I=1 TO N
 20 X=2*I-1
 30 GOSUB 150
 40 Z=Z+Y
 50 NEXT I
 .
 .
 .
150 IF X<>12 THEN G0TO 180
100 Y=248
170 RETURN
180 Y=200+4*X
190 RETURN

4-39

4.2.5.7 ERROR

The ERROR statement specifies a subroutine that will be
called via a GOSUB whenever any POWER BASIC error occurs.

Form:

<line number> ERROR <line number>
 ERROR <line number>

The ERROR statement enables the user to trap to an internal
error processing routine on the occurrence of any error. When
an ERROR statement has been executed and an error occurs,
control passes to the specified line number via a GOSUB
statement. The statement number where the error occurred will
be placed on top of the GOSUB stack; if the error is
recoverable, a RETURN statement will resume execution at that
same statement when the error is corrected. If the error is
unrecoverable and control will not be transferred back via a
RETURN, it is good programming practice to execute a POP
statement to remove the line number from the top of the
stack. This practice avoids unnecessary cluttering of the
stack, which may cause unpredictable results. After the error
trap, the system function SYS(1) will contain the error code
number and SYS(2) will contain the statement number in which
the error occurred. These are necessary for processing in the
error handler subroutine.

Once an error is encountered and causes transfer to the error
handler subroutine, the ERROR statement flag is cleared, and
future errors will not be trapped unless an ERROR statement
is again executed. When an ERROR statement has been executed
and an error occurs, the automatic printing of the error code
is suppressed.

Example:

 100 ERROR 1000
 .
 .
 .
1000 IF SYS(1)=10 THEN PRINT "STORAGE OVERFLOW"::STOP
1010 IF SYS(1)=23 THEN RESTOR::RETURN (rewind data file)
1020 ELSE PRINT "ERROR*" SYS(1):: STOP
1030 RETURN

Statement 100 designates the subroutine starting at statement
1000 to be the error handling subroutine. When an error
occurs, control is transferred to statement 1000, and the
error number is first tested for "storage overflow". If
"storage overflow" is not the error, it is tested for the
"read out of data" error number. If this is true, the data is
restored to its beginning and control returns to the
statement in which the error occurred. If this still was not
the error, the error number is output and execution stops.

4-40

4.2.5.8 STOP

The STOP statement terminates program execution at the
logical end of the program. There may be one or more STOP
statements in a POWER BASIC program, and they may appear
anywhere within the program.

Form:

<line number> STOP

The system displays the line where program execution
terminated.

Example:

 900 STOP
STOP AT 900

4.2.5.9 END

The END statement marks the end of a program and terminates
program execution.

Form:

<line number> END

The END statement functions just like the STOP statement. It
may appear as any statement within the program. The system
displays the statement number where program execution
terminated.

Example:

 70 END
STOP AT 70

4-41

4.2.6 Internal Input Statements

READ, DATA, and RESTOR statements are used in the following
forms:

 <numeric variable> <numeric variable>

<line number> READ { or }{ or }. . .
 <string variable> <string variable>

 <expression> <expression>

<line number> DATA {<string variable>}{<string variable>}. . .
 <string constant> <string constant>

<line number> RESTOR

<line number> RESTOR <line number>

POWER BASIC permits definition of a list of data items
containing both strings and numbers within the program.
Entries in this list are defined by DATA statements and
accessed sequentially by READ statements. The RESTOR
statement is used to move to a specific point within the list
or to the beginning of the list.

4.2.6.1 DATA

The DATA statement contains a list of data items separated by
commas. Each item in the list is either a string constant or
an expression which evaluates to a numeric constant. String
constants must be enclosed in quotes.

Example:

10 DATA 5, 3.14159,"DOE,JOHN",4*ATN(1)

A program may contain any number of DATA statements with no
restriction on their placement within the program; however,
they are typically placed together in a data block near the
beginning or end of the program. The data list will contain
all of the data items from all DATA statements in the same
order they are written in the program. DATA statements have
no effect when encountered during execution.

4-42

4.2.6.2 READ

The READ statement assigns values from the internal data list
to variables or array elements. The first READ statement
executed normally starts with the first item in the data
list. Reading of data items continues sequentially unless a
RESTOR statement is executed. An error is generated when a
READ statement requests the next value with the data block
exhausted of data.

The READ statement specifies a list of variables or array
elements whose values are to be assigned from the data list
as shown below:

50 READ X, Y, A(5,X), $B,$C(Y)

The examples below illustrate use of the DATA and READ
statements:

10 READ A,B,C,D
20 H=A*B*C*D
30 PRINT A,B,C,D,H
40 READ E,F,G
50 H=E*F*G
60 PRINT E,F,G,H
70 DATA 2,3,5,7,11,13,17
80 STOP

RUN
 2 3 5 7 210
 11 13 17 2431

The data in this example is supplied in one DATA statement,
but is used in two READ statements at two different locations
in the program. When the program encounters the first READ
statement, it searches for the lowest-numbered DATA statement
(which may occur before or after the READ statement). The
program takes numeric values from the DATA statement in
sequence associating them with READ statement variables in
sequence. In the example, A is assigned the value 2, B the
value 3, C the value 5, and D the value 7. The program
establishes access to the next data value (11), so it may be
assigned to the first variable encountered in the next READ
statement. Line 20 is computed, and the newly-introduced
variable H is assigned its computed value. The next READ
statement at line 40 introduces three new variables. The DATA
statement continues to supply data from line 70 at the pre-
established access point, so the new variables E, F, and G
take on the values 11, 13 and 17. A new value for H is
computed in line 50. The statement that follows prints the
new values for E, F, G, and H.

4-43

The user must match numeric variables in the READ list to
numeric expressions in the data list. Similarly, the user
must match string variables in the READ list to string
constants or string variables in the data list. An error will
result if this convention is not followed.

Example:

10 READ A,B,$CAT
20 LET C=A+B
30 PRINT A,B,C,$CAT
40 DATA 2,3,"TEXT"
50 STOP

RUN

2 3 5 TEXT

4-44

4.1.6.3 RESTOR

The RESTOR statement is used to move either to a specific
point in the data list, or to the beginning of the list. A
RESTOR statement without an argument resets the pointer to
the beginning of the first DATA statement.

A RESTOR with an argument resets the pointer to the line
number specified. The line number specified must exist but
need not be the line number of a DATA statement. The next
sequential DATA statement will be used.

Example:

70 RESTOR (restores to the beginning of the data list)
80 RESTOR 20 (restores to the first DATA statement at
 or beyond line 20)

The following example program illustrates the use of RESTOR:

10 DATA 14,16,18
20 READ I,J,K
30 PRINT I,J,K
40 RESTOR
50 READ X,Y,Z
60 PRINT X,Y,Z
70 END

RUN

14 16 18
14 16 18

The RESTOR statement in this program resets the DATA pointer
and transfers control to the READ statement in line 50 which
then obtains data from line 10 (even though the READ
statement in line 20 has used the same data). If the RESTOR
statement was omitted, POWER BASIC would print an error
message indicating a lack of data for the variables in the
READ statement at line 50.

If the following statement is added to the example program
between lines 40 and 50:

45 DATA 2,24,26

The statement at line 50 would still cause the values 14, 16,
and 18 to be printed. The RESTOR statement at line 40 results
in data being obtained from line 10 rather than from line 45.

If a program has no DATA or READ statements, the use of the
RESTOR statement does not affect the program.

4-45

4.2.7 Input and Output

4.2.7.1 INPUT

The INPUT statement is used for keyboard input into variables
of the BASIC program.

Form:

 , ,

<line number> INPUT <variable>{;}<variable>{;}

The INPUT statement performs as a READ statement with the
exception that it accesses the numeric constants and strings
from the external keyboard instead of from internal DATA
statements. It provides all translation from character data
to the internal formats of the POWER BASIC system and thus
assigns input values to the variables or array elements
specified in the input list. A11 characters are echoed as
they are entered. The INPUT statement is extremely versatile
and provides a means to 1) input numbers only, 2) input
character strings, 3) detect control characters, 4) prompt
with character strings, 5) specify maximum number of input
characters, 6) specify exact number of input characters, 7)
suppress carriage return/line feed, and 8) suppress
prompting.

Input variables may be entered in a list separated by
carriage returns. Numeric data may he represented as decimal
integers, floating point, exponential, or hexadecimal values.
There should be no embedded spaces within numeric values and
all spaces preceding or following numeric data are ignored.
For string data input, the string consists of all characters
after the prompting character and up to (but not including)
the end of the input (carriage return). The string includes
all entered blanks and quotes.

4-46

The INPUT statement prompts the user with a question mark (?)
for numeric only inputs, and a colon (:) for character
inputs. If an illegal number is entered in response to the
question mark prompt, the computer will respond with a double
question mark (??) and wait for correct input. The computer
will continue to prompt until the user has entered all data
requested.

In the following examples, a carriage return is represented
by (CR) and all user responses are underlined.

Examples:

40 INPUT X
50 INPUT $A, $B
60 INPUT $Y, Z
70 PRINT X, $A, $B, $Y, Z
80 STOP

RUN

 ?256 (cr)
 :CAT (cr) :DOG (cr)
 :HI (cr) ?80A (cr) ??80 (Cr)
 256 CAT DOG HI 80

 STOP AT 80

In the program, statement 40 outputs a question mark waiting
for numeric input. The user enters the number "256" followed
by a carriage return which terminates the INPUT statement of
line 40. The variable X is assigned the value of "256". Next
it prompts with a colon awaiting character string input. The
user enters "CAT" followed by a carriage return. The computer
immediately prompts with a colon awaiting the next string
input. The user enters "DOG" and a carriage return which
terminates this input line. The computer then prompts with a
colon and the user inputs "HI" and a carriage return. Next,
the computer prompts with a question mark and the user
incorrectly enters "80A", an illegal numeric value.
Therefore, computer responds with a double question mark and
awaits correct input. The user enters "80" followed by a
carriage return which terminates the INPUT statement.
Statement 70 is then executed and outputs the values read
into the variables.

4-47

An INPUT statement can be combined with a PRINT statement to
prompt user response as follows:

20 PRINT "YOUR VALUES OF X, Y, AND Z ARE";
30 INPUT X, Y, Z
40 STOP

RUN

 YOUR VALUES OF X, Y, AND Z ARE? 50 (cr) ?60 (cr) ?70 (cr)

 STOP AT 40

Since user prompting for data input is required in most
applications, the INPUT statement has been designed to permit
string constants to be embedded in the INPUT statement for
direct prompting output. The string constants must be
enclosed by quotation marks. There may be any number of
string constants within the INPUT statement separated from
input variables and other string constants by commas or
semicolons.

The above example may be performed as follows:

20 INPUT "YOUR VALUE OF X IS", X, " Y", Y, " Z", Z
30 STOP

RUN

 YOUR VALUE OF X IS? 1 (cr) Y? 2 (cr) Z? 3 (cr)

 STOP AT 30

Similarly for string input:

10 DIM N(5)
20 INPUT "WHAT IS YOUR NAME", $N 0
30 PRINT "YOUR NAME IS ";$N 0
40 GOTO 20

RUN

 WHAT IS YOUR NAME: JOHN (cr)
 YOUR NAME IS JOHN
 WHAT IS YOUR NAME:

A semicolon may be used to perform input formatting. If a
semicolon is placed at the end of an INPUT statement line,
the carriage return/line feed is suppressed after processing
the INPUT statement as the example below illustrates:

10 INPUT "INPUT X", X;
20 PRINT " X SQUARED="; X*X
30 INPUT "INPUT Y", Y

4-48

40 PRINT "Y CUBED="; Y*Y*Y
50 STOP

RUN

 INPUT X?12 (cr) X SQUARED= 144
 INPUT Y?3 (cr)
 Y CUBED= 27

 STOP AT 50

In line 10 the semicolon is present at the end of the INPOT
statement; therefore, the carriage return/line feed is
suppressed after entering the constant 12 so that "X SQUARED=
144" can be output on the same line. In line 30 a semicolon
is not present so the carriage return/line feed is performed.

When the semicolon is placed before an assignment variable in
the INPUT list, the automatic prompting of a question mark or
colon is suppressed. The user may then perform his own
prompting in the POWER BASIC Program by using PRINT
statements or placing character strings in the INPUT
statement.

Example:

 5 DIM N(3)
10 INPUT "WHAT IS YOUR EMPLOYEE NUMBER?", $N (0)
20 INPUT "WHAT IS YOUR EMPLOYEE NUMBER?"; $N (0)
30 STOP

RUN

 WHAT IS YOUR EMPLOYEE NUMBER?: 1234 (cr)
 WHAT IS YOUR EMPLOYEE NUMBER?1234 (cr)

 STOP AT 30

In line 10, the INPUT Statement prompted with a colon (:). In
line 20 no prompt was issued.

The user may limit the number of characters which can be
entered from the keyboard for both numeric and string
variable assignments by using the "#" or "%" operators in the
INPUT statement. Use of the "#" operator will specify the
maximum number of characters which can be entered from the
keyboard. Use of the "%" operator will specify the exact
number of characters which must be entered.

4-49

Forms:
 , ,

 <line number> INPUT <#> expression {;} variable {;}...

 , ,

 <line number> INPUT <%> expression {;} variable {;}...

When using the "#" operator, the user may enter any number of
characters less than the specified maximum by ending the
input sequence with a carriage return. The user cannot enter
more than the specified maximum number. When the maximum
number of characters has been entered POWER BASIC stops
accepting keyboard input, assigns the value just entered, and
automatically continues to the next sequential statement or
INPUT statement parameter.

Use or the "%" operator requires that an exact number of
characters be entered. POWER BASIC waits for the exact number
of specified characters to be entered and then continues to
the next sequential statement or INPUT statement parameter;
no carriage return (cr) is required at the end of user INPUT.
If the user attempts to enter less than the specified number
of characters by ending the input sequence with a carriage
return, POWER BASIC will ignore the carriage return and
continue to wait until the number of characters specified has
been entered.

Examples:

10 REM THE MAXIMUM NUMBER WHICH CAN BE ENTERED IS 999
20 INPUT #3, A, B
30 STOP

RUN

 ?512 ?900

 STOP AT 30

10 PRINT "ENTER PHONE NUMBER (XXX-XXX-XXXX)";
20 INPUT %3;A,"-",%3;B,"-",%4;C
30 PRINT "YOUR PHONE NUMBER IS";A;"-";B;"-";C
40 STOP

RUN

 ENTER PHONE NUMBER (XXX-XXX-XXXX)123-456-1234
 YOUR PHONE NUMBER IS 123-456-1234

 STOP AT 40

In the first example the user may enter any numbers which do
not require more than three keystrokes. The range would be

4-50

limited to -99 to 999. In the second example the user is
requested to enter his telephone number in the format XXX-
XXX-XXXX. The % symbols require the user to enter exactly the
required amount of numbers. The user enters 123. The computer
places the number in variable A and outputs a "-". The user
enters 456, and the computer places the number in variable B
and outputs a "-". The user enters 1234 to complete the
sequence. Statement 30 then prints the user's phone number
using the variables of the INPUT list.

The user may detect any invalid input or control characters
which are entered during both numeric and string variable
assignment by using the question mark (?) operator in the
INPUT list.

Form:

 , ,

<line number> INPUT <?><line number>{;}<variable>{;}

The "?" operator specifies the line number to which control
is transferred via a GOSUB statement if a control character
or invalid input is encountered during input. The SYS(0)
function will return the control character encountered.
SYS(0) will be equal to -1 if there was an invalid input.
Otherwise, SYS(0) will equal the decimal equivalent of the
control character. This feature is useful for transferring
control to internal subroutines by using the INPUT statement.
For example, to the user who requires additional information
for the input of data, (control) H can be used to transfer to
a routine which outputs a HELP message.

Example:

 10 INPUT ? 100,N
 20 PRINT N
 .
 .
100 REM SUBROUTINE TO PROCESS (control) H INPUT
110 PRINT "USER INPUT ASSISTANCE"
 .
 .

RUN

 ? (control) H -
 USER INPUT ASSISTANCE
 .
 .

In line 10 if the user enters a numeric value, it will be
entered in the variable N; or if the (control) H key is
entered, the subroutine at statement 100 will be executed and
output the instructions for user input.

4-51

4.2.7.2 PRINT

The PRINT statement causes the values of all expressions in
the list to be printed on the output terminal. Commas and
semicolons are used to separate expressions and provide for
print formatting.

Forms:
 PRINT , , ,

line number{ ; }expression{;}expression{;} ... {;}

 PRINT , , ,

 { ; }expression{;}expression{;} ... {;}

The expression list may contain any numeric variable, numeric
expression, string variable, string constant, or any ASCII
code which is to be output to the terminal device.

String constants may be printed directly by inserting them in
the PRINT statement expression list. String variables are
printed by having the variable name preceded with the dollar
sign designator. The following example illustrates the output
of string constants and string variables.

100 DIM N(10)
110 $N(0)= "POWER BASIC."
120 PRINT "THE NAME OF THE LANGUAGE IS ";
130 PRINT $N(0)
140 STOP

RUN

 THE NAME OF THE LANGUAGE IS POWER BASIC.

 STOP AT 140

The PRINT statement may be used to directly output ASCII
codes to the terminal device. The hexadecimal ASCII code must
be enclosed in angle brackets, (e.g., <0A>) and may be placed
anywhere with string constants or predefined string variables
appearing within the PRINT statement expression list. Only
the low order 7 bits of the hexadecimal code will be output
to the device. Evaluation BASIC does not support the direct
output of ASCII characters.

Example:

10 PRINT "GO TO THE NEXT LINE <0A><0D> AND CONTINUE PRINTING!"

would generate

GOTO THE NEXT LINE
AND CONTNUE PRINTING!

4-52

To facilitate rapid statement entry in the edit mode, a
semicolon (;) may be used in place of the word "PRINT" in any
PRINT statement.

20 ;X,Y,Z

In its simplest form, the expressions in the output list are
separated by commas. In this form, an output line is divided
into five 15-character print fields starting in columns 1,
16, 31, etc. A comma following an expression in a list is a
signal to advance to the next field. Expressions separated by
commas are output one expression per print field. This
enables output lines to formatted into five left justified
columns within the field. Expressions may occupy more than
one field, in which case the comma following the expression
in the PRINT list advances the print output to the next blank
field. Note that when more than five expressions are included
in the output list separated by commas, the terminal device
should be of the type which buffers the characters and
automatically generates a carriage return/line feed when its
buffer is full to obtain the correct five column output. If
the terminal device does not perform in this manner, output
values may be lost at the end of output lines, and the five
column output format may be skewed. Printing will continue in
as many lines as are required to complete the output list.
When the entire outputs list has been printed, a carriage
return/line feed is automatically inserted after the last
print item. Subsequent printing begins on the next line. For
example, the following statements:

10 X=7
20 $NAM = "PAUL"
30 PRINT X, X+2, X+4
40 PRINT "GEORGE", "HARRY", $NAM

would generate

7 9 11
GEORGE HARRY PAUL

The automatic carriage return/line feed at the end of a PRINT
statement may be suppressed by placing a comma at the end of
the output list. Subsequent printing will begin in the next
field of the same line. For example:

10 X = 7
20 $NAM="PAUL"
30 PRINT X, X+2, X+4,
40 PRINT "GEORGE", "HARRY", $NAM

would generate

7 9 11 GEORGE HARRY
PAUL

4-53

Note that most terminals automatically generate a carriage
return and line feed as occurs in the following example:

10 FOR I=1 TO 14
20 PRINT I,
30 NEXT I
40 STOP

RUN

 1 2 3 4 5
 6 7 8 9 10
11 12 13 14

STOP AT 40

More compact printing can be achieved by using semicolons
rather than commas as expression separators. When followed by
a semicolon, numbers in the output list will print in as many
characters as required to print the numbers of the expression
plus one blank space added on the left. However, strings in
the output list will print in exactly the end of an output
list, the last item will print in a short field as just
described, and subsequent printing will begin immediately
after that field. For example:

10 S1=95
20 S2=87
30 S8=92
40 PRINT "SCORES AND NAME:";S1;S2;
50 PRINT S3;" JOE DOE"

would generate

SCORES AND NAME: 95 87 92 JOE DOE

Another example:

10 FOR I=1 TO 14
20 PRINT I ;
30 NEXT I
40 STOP

RUN

1 2 3 4 5 6 7 8 9 10 11 12 13 14

STOP AT 40

Note that both semicolons and commas may be used to separate
expressions in any PRINT statement and that the print
position of the next expression will depend on the separator
(semicolon or comma) used to delimit the expressions. The
following example illustrates the use of both delimiters in a
single PRINT statement.

4-54

10 H=98
20 L=60
30 A=79
40 PRINT "HIGH= ";H,"LOW= ";L,"AV= ";A

would generate

HIGH= 98 LOW= 60 AV= 79

A PRINT statement without an expression list is a valid
statement. Execution of this statement results in the output
of one blank line, as the example following illustrates.

10 PRINT "THERE SHOULD BE TWO BLANK LINES BETWEEN HERE AND"
20 PRINT
30 PRINT
40 PRINT "HERE!"

would generate

THERE SHOULD BE TWO BLANK LINES BETWEEN HERE AND

HERE!

Print formatting. The PRINT statement may be used to specify
the exact print format for the output of numeric expressions.
The pound sign (#) within a PRINT statement followed by a
hexadecimal formatting character or a decimal formatting
string provides this capability.

Forms:

 ,

<line number> PRINT <#><exp>{;}
 ,

 PRINT <#><exp>{;}
 ,

<line number> PRINT <#,><exp>{;}
 ,

 PRINT <#,><exp>{;}
 ,

<line number> PRINT <#;><exp>{;}
 ,

 PRINT <#;><exp>{;}
 ,

<line number> PRINT <#><string constant><expression>{;}
 ,

 PRINT <#><string constant><expression>{;}
 ,

<line number> PRINT <#><string variable><expression>{;}
 ,

 PRINT <#><string variable><expression>{;}

4-55

The formatting function may appear anywhere within the
parameter list of the PRINT statement. The parameters within
the PRINT statement are separated by commas or semicolons as
explained in the PRINT statement. A separator appearing at
the end of the parameter list will force subsequent printing
to continue on the same line just as in the PRINT statement.

A format designator (#) followed by a semicolon, comma, or
space is used to output hexadecimal values in either byte,
word, or free format, respectively. These format specifiers
convert to hexadecimal the numeric constant, variable or
expression immediately following the specifier. The scope of
the hexadecimal format specifier is for the first statement,
variable, or expression only and not for the entire line as
in the case of print formatting using a string image.
Subsequent values will be printed in free format decimal
representation.

The "#;" specifier converts the value and outputs the
hexadecimal result is a single byte with no preceding or
trailing blanks or zeroes and without the "H" character. Only
the least significant byte x111 be output for values which
require more than one byte for their hexadecimal
representation.

The "#," specifier converts the value and outputs the
hexadecimal result as a full word (two bytes) with no
preceding or trailing blanks or zeroes and without the "H"
character. The least significant two bytes will be output for
values requiring more than one word for their hexadecimal
representation.

The "#" specifier by itself converts the value and outputs
the result in hexadecimal free format representation. The
hexadecimal result occupies as many digit positions as
required to print the number. It is preceded with a zero (0)
and followed by the "H" character.

The following examples illustrate hexadecimal output
formatting. The user will terminate the entry line with a
carriage return. POWER BASIC outputs are designated by
underlining.

PRINT #;1;" ";#,1;" "; #1 01 0001 01H
PRINT #;31;" "#,31;" " #31;" ";31 1F 001F 01FH 31
LET A=106
PRINT #;A;" ";#,A;" ";#A;" ";A 6A 006A 06AH 106

Numeric decimal formatting is designated within a PRINT
statement parameter list by a print format specifier (#)
followed by a format constant or string variable. The format
string may be either a string constant enclosed in quotes
which directly contains the formatting string, or a string
variable which has previously been assigned the formatting
string.

4-56

The format string indicates the final printed image of how
the numeric expressions specified within the PRINT statement
parameter list are to be output. Fields are reserved for
printing numeric data by forming output images of the printed
results. Special characters are used within the format string
to indicate these results.

Several formatting strings may be interspersed within a
single PRINT statement parameter list. Numeric output values
use the last defined print format in that statement line for
their output. Exit from a PRINT statement line resets the
formatting flag with subsequent numeric values printed in
free format. That is, the range of print formatting is
limited to the print statement line in which it is located.
Subsequent PRINT statements each require their own print
format specifier (#) and string.

Text to be output my be interspersed within the formatting
string so long as it contains none of the special characters
used for print formatting.

The special characters used in the formatting string are
shown in Table 5-2.

When using print formatting, floating point numeric values
are rounded to the number of decimal plates specified by the
format string. A formatting error occurs if a numeric value
is inconsistent with the specified formatting string or if
the integer portion of a value requires more digits than
specified by the format string. This is indicated to the user
by filling the entire output field with asterisks (*).

The following paragraphs and examples explain the use of
formatting characters. In these examples single quotes (')
are embedded within the format field so the actual printed
results can be shown more clearly. In practice these quotes
typically would not be used. The user may execute these
examples from the keyboard by entering the example through
the final semicolon (;), inclusive, and then terminating the
entry line with a carriage return. POWER BASIC will respond
with the formatted results output between the quotes.

4-57

The "9" and "0" formatting characters are used as digit
holders. The period (.) character specifies the decimal point
position on output.

PRINT #"'99'" 5;' 5'
PRINT #"'999.00'"25.32;' 25.32'
PRINT #"'99.0'" 15.575;'15.6'
PRINT #"'99.0'" 101.25;******

The "0" formatting character also forces a zero if a non-
significant digit is output at that position.

PRINT #"'999.00'"28;' 28.00'
PRINT #"'990.00'".153;' 0.15'
PRINT #"'990.000'".75;' 0.750'
PRINT #"'990.000'" 1047.23 ;*********
PRINT #"'000-00-000'" 3021; '000-03-021'

TABLE 5-2. FORMATTING STRING CHARACTERS

CHARACTER

FUNCTION

EXAMPLE
. Decimal point specifier PRINT #"999.99"25.32; 25.32
^ Translates to decimal point PRINT #"999^00"1000; 10.00
, Suppressed if before signi-

ficant digit
PRINT #"999,999.99"100; 100.00

9 Digit holder PRINT #"9999"123; 123
0 Digit holder or forces zero PRINT #"9990.99".234; 0.234
$ Digit holder & floats $ PRINT #"$$$.99"8; $8.00
S Digit holder & floats sign PRINT #"SSS.99"-6; -6.00
E Sign holder after decimal PRINT #"990.99E"-150.75; 150.75-
< Digit holder before decimal

& floats on negative number
PRINT #"<<<.00>"500; 500.00

> Appears after decimal if
negative

PRINT #"<<.00>"-50; 50.00>

4-58

The "^" formatting character translates to a decimal point
upon output wherever it is located in the format field. For
example, this is useful when performing monetary calculations
in pennies and then translating the results to dollars and
cents on output.

PRINT #"'999^00'"200;' 2.00'
PRINT #"'999^00'"2532;' 25.32'
PRINT #"'999^00'"12000;'120.00'

The comma (,) formatting character inserts a comma in the
output numeric value; however, it is suppressed if there are
no significant digits to the left of its position in the
output value. Typically, it is used to separate groups of
three decimal digits, (e.g., 1,000 and 1,000,000).

PRINT #"'99,990.00'"3529.87; ' 3,529.87'
PRINT #"'99,990.00'" 903; ' 903.00'
PRINT #"'99,990.00'"10.2333; ' 10.23'
PRINT #"'99,990.00'"100256.72; ***********

The dollar ($) sign formatting character is used to output
the dollar sign with the numeric output value. It is a digit
holder and also "floats" to the position immediately to the
left of the most significant digit of the output value.

PRINT #"'$$$.00'"25.32;'$25.32'
PRINT #"'$$$.00'".50;' $.50'
PRINT #"'$$$.00'"100;'100.00'
PRINT #"'$$$.00'"1000;********
PRINT #"'$,$$$.00'"1.52;' $1.52'
PRINT #"'$$,$$$.00'" 9536; '$9.536.00'

The "9" formatting character is used to output a signed
numeric value. A minus sign (-) is output for a negative
number and blank for a positive number. The "S" character is
a digit holder and "floats" the sign of the numeric value to
the position immediately to the left of the most significant
digit of the output value.

PRINT #"'SSS0.00'" 208.79; ' 208.79'
PRINT #"'SSS0.00'" -20.79; ' -20.79'

If the user attempts to output a negative number without
using the "S" formatting character, the number will be output
as a positive number.

The "E" formatting character is used to output a signed
numeric value with the sign appearing to the right of the
decimal point. It functions only as a sign holder and is not
a digit holder.

4-59

PRINT #"'990.00E'" 32.253; ' 32.25 '
PRINT #"'990.00E'"-32.253; ' 32.25-'
PRINT #"'990.00E'" -.50; ' 0.50-'

The "<" and ">" formatting characters are used in another
form of outputting negative numbers. They typically are used
together in the formatting string. The "<" character is a
digit holder and appears before the decimal point. The ">"
character appears after the decimal point and is only a sign
holder. On the output of a negative number both the "<" and
">" characters are output with the string. The "<" character
will float on a negative number to the position immediately
to the left of the most significant digit of the output
value. The ">" character will appear at its position to the
right of the decimal point on a negative number. When
outputting a positive number, neither the "<" nor ">"
character will be output in the string.

PRINT #"'<<<,<<<.00>'" 1250; ' 1,250.00 '
FRINT #"'<<<,<<<.00>'" -1250; ' <1,250.00>'
PRINT #"'<<<,.00>'" .20; ' 20. '
PRINT #"'<<<,.00>'"-0.2; ' <.20>'

The following sample program further illustrates the results
of print formatting. When this program is executed the user
is requested to enter a numeric value and formatting string.
POWER BASIC then outputs the number using the user supplied
print formatting string.

100 DIM F(5)
110 INPUT "INPUT NUMBER"N" FORMAT"$F(0)
120 PRINT "'"#$F(0);N"'"
130 GOTO 110

RUN

INPUT NUMBER? 1 FORMAT: 999,990.99
' 1.00'
INPUT NUMBER? 123456 FORMAT: 999,990.99
'123,456.00'
INPUT NUMBER? 529728761 FORMAT: 000-00-0000
'529-72-8761'
INPUT NUMBER? 2335.34 FORMAT: $$$,$$$,$$$.99E
' $2,335.34 '
INPUT NUMBER? -234.56 FORMAT: SSSSS.99
' -234.56'
INPUT NUMBER? -2335.34 FORMAT: $$$.$$$,$$$.99E
' $2,335.34-'
INPUT NUMBER? 1234556 FORMAT: 999,999
'*******'
INPUT NUMBER? 123 FORMAT: <<<,<<0.99>
' 123.00'
INPUT NUMBER? -1234 FORMAT: <<<,<<0.99>
'<1,236.00>'

4-60

TAB. Output formatting can also be controlled by use of the
TAB function.

Form:

TAB (<expression>)

The expression in the TAB function specifies the horizontal
column position where the print item following the TAB will
begin printing. The TAB function may contain any expression
as its argument. The expression is evaluated and its integer
portion used. If the result is greater than the line size,
the specified print item will be printed on the next output
line. If the column specified by the integer part of the
expression has already been passed in the current print line,
the TAB function will be ignored and the print item will
be output at the current position in the print line. The TAB
function may be used to format output into columns on the
output device.

Examples:

10 PRINT "BIG"; TAB(20);"SPACE"

will generate

BIG SPACE

while:

10 PRINT TAB(20); "SPACE";TAB(1);"BIG"

will generate

 SPACEBIG

In the first example, the string "BIG" is output starting in
column 1. The TAB function advances the printer to column 20
and outputs the string "SPACE". In the second example, the
TAB function advances the printer to column 20 and outputs
the string "SPACE". The TAB (1) attempts to return the
printer to column 1 in the print line. Since that column
position has already been passed, the string "BIG" is output
immediately following "SPACE" (the current position on the
print line).

4-61

PRINT cursor control:

In conjunction with the PRINT statement, the user may
position the cursor at any location on the screen. Cursor
control is performed using the @ operator.

Forms:

[line number] PRINT @(<exp1>,<exp2>) {;} <rest of print>

[line number] PRINT @<$var> {;} <rest of print statement>

By using the first form, the cursor may be positioned to any
coordinates specified by exp1 and exp2. Exp1 specifies the
column (X) position and exp2 the row (Y) position. There are
24 lines (numbered 0 to 23) on the screen. In text mode there
are 40 characters (0 to 39) on each line, in graphics mode
there are 32 (0 to 31). Specifying a coordinate outside these
ranges will result in the message:

** Invalid screen command **

EXAMPLES:

100 PRINT @(10,20);"Hello"

This prints the message "Hello" starting at x,y coordinates
of (10,20), that is, column 10 on screen line 20.

200 A=10 : B=20
210 PRINT @(A,B) ; "Hello"

This has the same effect and shows how variables may be used
for the coordinates.

4-62

The second form of cursor control uses a string containing
special control letters. The string may be either a string
variable or the required letters enclosed in quotes.

The valid control letters are as follows:

CODE ACTION

 B Move cursor to beginning of line
 C Clear screen and move cursor HOME
 D Move cursor down one line
 H Move cursor to HOME (top left corner)
 L Move cursor left one character
 R Move cursor right one character
 U Move cursor up one line

Any of these codes may be preceded by a positive integer
representing the number of times the code is to be
repeated.

EXAMPLES:

10 PRINT @"C5D10R" ; "5 DOWN AND 10 TO THE RIGHT"

This clears the screen and moves the cursor 5 down and 10 to
the right. It has the same effect as:

10 PRINT @"C" ; @(10,5) ; "5 DOWN AND 10 TO THE RIGHT"

which clears the screen and goes to coordinates 10,5.

10 DIM SCR(5)
20 $SCR(0)="4UB"
30 PRINT @$SCR(0); "4 UP, BEGINNING OF LINE"

This example shows how a string variable may be used.

Specifying X,Y coordinates will have no effect on any device
other than the CORTEX main screen (device 1). The control
letters will print the cursor control ASCII characters to
any enabled devices.

4-63

4.2.7.3 UNIT

The UNIT statement designates the device or devices to which
all subsequent PRINTed output will be sent.

Forms:

<line number> UNIT <expression>
 UNIT <expression>

The expression may be any numeric constant, variable or
expression which is evaluated and its integer portion used.

If <expression> is 0 then all devices are disabled
If <expression> is -ve then the specified device is disabled
If <expression> is +ve then the specified device is enabled

The device number may be from 1 to 16. The following devices
are recognized as standard by the CORTEX:

1 - CORTEX TV screen and keyboard
2 - RS232C port
3 - Cassette interface
4 - Centronics parallel printer interface

Devices 1 and 3 are part of the minimum CORTEX system. Device
2 requires the RS232 interface populated on the CORTEX board.
Device 4 requires an external interface board.

When the CORTEX is turned on, and when a cold start is
performed, device 1 is initialized for output. Input will be
accepted from all devices except 3.

EXAMPLE:

10 PRINT "Testing"
20 UNIT 2
30 PRINT "Printing to RS232C"
40 UNIT -2

The first print at line 10 appears only on the screen. Line
20 enables the RS232C interface. The message from line 30
goes both the screen which is still enabled and to the
RS232C. Line 40 turns off the RS232C again. Input is accepted
from all devices.

The SYS(5) function will return information about which
devices ere enabled. (See section 4.3.5).

4-64

4.2.7.4 BAUD

The BAUD statement is used to set the transmission rate of
any serial I/O device in the system that uses a 9902 UART.

Forms:

<line number> BAUD <expression 1>,<expression 2>
 BAUD <expression 1>,<expression 2>

The BAUD statement will set the transmission rate of the
device specified by expression 1 to the baud rate (bits per
second) specified by expression 2. Devices in the standard
CORTEX that will respond to this statement are:

2 - RS232C port
3 - Cassette interface

Expression 2 must evaluate to a rate between 75 and 100,000
baud. When the CORTEX is turned on or a cold start performed
all 9902's in the system are initialized to 300 baud. The
serial I/O uses 7 data bits, even parity and 2 stop bits.

The statement:

BAUD 3,<baud rate>

also implicitly enables input from device 3, the cassette
interface. Pressing ESCAPE disables input from the cassette
interface.

EXAMPLE:

BAUD 2,19200

This sets the RS232C port to 19200 baud.

4-65

4.2.7.5 MOTOR

Forms:

<line number> MOTOR <expression>
 MOTOR <expression>

The MOTOR statement is used to the tape recorder motor
on and off via the remote switch connection. If <expression>
is 0 the motor is turned off, if it is non-zero the motor is
turned on. When using this in a program enough time must be
allowed for the tape to speed up before data is output.

EXAMPLE:

10 UNIT 3
20 MOTOR 1
30 WAIT 100
40 PRINT "This is output to the cassette"
50 WAIT
60 WAIT 5
70 MOTOR 0 : UNIT -3

Line 10 enables output to the cassette and line 20 turns on
the motor. Line 30 then waits for one second for the tape to
speed up. Line 40 outputs to the cassette (as well as to the
screen) and line 50 waits for this to complete. Line 60
waits for the last character output to reach the tape and
line 70 then turns off the tape and disables output to it.

4-66

4.2.7.6 BASE

NOTE: An understanding of the CORTEX hardware is required
to successfully use any of the CRU statements and functions.

The BASE statement sets the CRU base address for subsequent
CRU operations.

Form:

<line number> BASE <expression>
 BASE <expression>

The BASE statement evaluates the expression and sets the CRU
base address to the result for use by the CRB and CRF
functions. The CRB function addresses bits within +127/-128
of the evaluated base address. The CRF function transfers
bits using the evaluated base address as the starting CRU
address.

The CRU provides a maximum of 4096 input and output lines
that may be individually selected by a 12-bit address. The
12-bit address used by the CRU instructions is actually
located in bits 3 through 14 of a workspace register. The
evaluated expression of the BASE statement is loaded into the
entire 16-bits of this workspace register. Therefore, the
BASE expression should evaluate to twice the actual
(physical) CRU base address desired since only bits 3 through
14 are used. The least significant bit of the BASE expression
value is ignored for CRU operations. Therefore, all
expressions should evaluate to an even number. The range of
valid expressions is from 0 to 8190 (hexadecimal 1FFE).

Examples:

10 BASE 64
20 CRF(0)=-1
30 BASE 100
40 CRB(-1)=0

Statement 10 sets the CRU BASE address to 64 (physical
address of 32), and statement 20 outputs a 16-bit -1 value.
Statement 30 sets the CRU BASE address to 100 (physical
address of 50, and statement 40 sets the CRU bit displaced -1
from the base (physical address of 49) to zero.

4-67

4.2.8 Timing Statements

4.2.8.1 TIME

The TIME statement 1s used to set, display, or store the 24
hour time-of-day clock.

Forms:

<line number> TIME <exp>,<exp>,<exp>
 TIME <exp>,<exp>,<exp>
<line number> TIME <string variable>
 TIME <string variable>
<line number> TIME
 TIME

The TIME statement is used with the expression list to set
and start the time of day clock. The form of the expression
is as follows:

TIME HH,MM,SS

where

M = hours, M = minutes, S = seconds

The clock is set up as a 24-hour clock with times ranging
from 00:00:00 to 23:59:59. Initialization of the clock is
valid at any point in the program. Its value may also be
reinitialized at any point.

Examples:

 TIME 10,27,30 (in keyboard mode)
 TIME 3,5,0 (in keyboard mode)
10 TIME 21,8,15

The second form of the TIME statement enables storing the
current time of day in a string variable. This is useful for
recording occurrence time of significant events in a user's
application program.

Example:

 10 DIM T(3)
 20 TIME 11,4,0
 .
 .
100 TIME $T(0)
120 PRINT $T(0)
130 STOP

RUN

11:04:37
STOP AT 130

4-68

The time of day may be directly displayed at any point within
the program. It may also be displayed from the keyboard when
in idle mode by using the third form of the TIME statement.
The time of day will be displayed in the following format:

HH:MM:SS

Examples:

 TIME 9:31:23 (in keyboard mode)
 10 TIME 11,4,0
 .
 .
 .
100 TIME
110 STOP

RUN

11:04:37
STOP AT 110

4-69

4.2.8.2 WAIT

Forms:

[line number] WAIT <expression> (a)
[line number] WAIT (b)

Format (a) of the WAIT statement causes the program to delay
execution for (expression * 0.01) seconds.

Format (b) of the wait statement causes the program to delay
execution until all current output has completed.

When the WAIT statement is executing all normal input and
output operations are still active and the user may continue
typing in at the keyboard without keystrokes being missed.
Program execution may be aborted by pressing the 'ESCAPE'
key providing that it has not been disabled via the 'NOESC'
statement.

EXAMPLES:

100 BAUD 2,110 ! SET UP THE PRINTER FOR A TELETYPE
110 UNIT 2 ! ENABLE IT FOR OUTPUT
120 PRINT "EXECUTION BEGINS IN 1 SECOND"
130 WAIT ! MAKE SURE THE PRINTER HAS FINISHED
140 WAIT 100 ! NOW WAIT THE 1 SECOND
150 UNIT -2 ! DISABLE THE PRINTER
160 REM *** NOW EXECUTE THE PROGRAM ***
999 END

The program sets up the RS232 port as a very slow printer
(about 10 characters per second) and enables output to it.
The message will take some time to print out, and program
execution would normally continue while the printer was
still going. The WAIT holds the program until the message
has been output. The WAIT 100 then holds for a further one
second.

4-70

4.2.9 RANDOM

The RANDOM statement randomizes the seed for the pseudo-
random number generator.

Forms:

<line number> RANDOM <expression>
 RANDOM <expression>

The RANDOM statement is used in conjunction with the RND
function. The RND function returns the next number in the
random number sequence. It returns this value when requested
and replaces it with the next random number. The RANDOM
statement is used to change the random number seed and
therefore the sequence of pseudo-random numbers.

The random seed is set to a constant value when POWER BASIC
is first initialized so that the RND variable will always
return the same sequence of numbers to facilitate program
debugging. After the debugging phase, the RANDOM statement
may be used to alter this sequence.

The RANDOM statement is used to set the seed to a specific or
arbitrary value. The expression is evaluated and the result
used as the seed of the random number generator. The
expression may be any valid POWER BASIC expression. The
evaluated expression must be within the limits of -32768 and
32767 or a fix error will result. The sequence of numbers
generated by a specific seed value will always be the same.
This is useful for debugging and testing an application
program with a predetermined seed value. Arbitrary seed
values may be generated by the user by using combinations of
variables and functions (including the RND function) within
the expression.

Examples:

10 RANDOM 220
20 RANDOM RND
30 RANDOM RND * MEM(X)

A completely random number may be generated by the sequence:

T=TIC(0)
RANDOM T-32767*INT(T/32767)

The random number seed depends on the number of clock ticks
(10ms) since the computer was turned on. The additional
calculation is needed to reduce the tic value to a 16 bit
integer acceptable to RANDOM.

4-71

4.2.10 ESCAPE and NOESC

The ESCAPE and NOESC statements provide capability to enable
or disable the escape key to interrupt program execution.

Forms:

<line number> ESCAPE
<line number> NOESC

The ESCAPE statement enables the terminal device escape (or
break) key to interrupt program execution. When the escape
key is struck program execution terminates upon completion of
the current statement line. Keyboard sampling during the RUN
mode is performed only between statement lines. Caution
should be observed when certain statement constructions are
used. For example, the FOR and NEXT statements should not
appear in the same statement line, because a statement line
is autonomous. Once the FOR/NEXT line begins execution, it
cannot be interrupted by using the escape key. It can be
interrupted only if the end condition of the FOR/NEXT loop is
met, or if the user reinitializes the system via the reset
switch on the CPU board.

The NOESC statement disables the terminal device escape (or
break) key from interrupting program execution.

The ESCAPE statement is used during program development and
debug. The NOESC statement is used for time critical
application programs or in a production environment where it
is disadvantageous for the user to interact with POWER BASIC
in a non-program controlled mode.

Examples:

10 ESCAPE
10 NOESC

4-72

4.2.11 CALL

Form:

[line number] CALL ["name",] <address> [,<par1>,...<par12>]

The CALL statement is used to call external subroutines
written in assembly language.

The name is optional and is the name of the routine called.
It is not used by BASIC and is simply for documentation
purposes.

The address is the entry point of the routine, and may be
specified in decimal or hexadecimal. Up to 12 parameters may
be passed, separated by commas. These are evaluated as 16
bit 2's complement integers between -32768 and 32767.

The parameters are stored in R0 to R11 of the routines
workspace. R12 contains the number of parameters passed. R13
to R15 should be restored to their entry values before
returning via a RTWP instruction.

If it is desired to pass variables that take more than 16
bits (such as arrays or strings) then a pointer should be
passed by entering "ADR(variable)" as the parameter. This
method is also used to allow an assembly language subroutine
to return information to BASIC.

Space may be reserved for assembly language routines by
using the NEW command. Assembly language routines may be
written using the monitor, which is accessed by the MON
command.

Example:

10 CALL "MYROUTINE" , 6200H , 42 , A , ADR($C[0])

This statement calls a routine from address 6200H and passes
3 parameters. The first is the number 42, the second the
variable A as a 16 bit integer and the third the address of
the dimensioned string variable $C(0).

4-73

4.2.12 Color Graphics Statements

4.2.12.1 TEXT

Form:

[line number] TEXT

The TEXT statement causes the video display processor to be
initialized to provide 24 lines of 40 characters each. The
screen will be cleared to the current background color and
the text cursor positioned to 0,0 (top left hand corner). Any
characters that are then printed will be in the current
foreground color. This command also resets the character set
to that currently contained in RAM. This command needs to be
executed after the character set has been modified via the
CHAR statement to cause the new character set to be used
for text.

After execution of the TEXT statement the video display
processor is in text mode. In text mode all characters on the
screen are in the foreground color. Printing beyond the
bottom of the screen causes the screen to scroll up. The
character cell numbers as used by the SGET and SPUT
statements are shown below.

CHARACTER CELLS - TEXT MODE

+---+---+---+---+---+---+-/ /-+---+---+---+
| 0 | 1 | 2 | 3 | 4 | 5 | |37 |38 |39 |
+---+---+---+---+---+---+-/ /-+---+---+---+
|40 |41 |42 |43 |44 |45 | |77 |78 |79 |
+---+---+---+---+---+---+-/ /-+---+---+---+
|80 |81 |82 |83 |84 |85 | |117|118|119|
+---+---+---+---+---+---+-/ /-+---+---+---+
/ / / / / / / / / / /

/ / / / / / / / / / /
+---+---+---+---+---+---+-/ /-+---+---+---+
|880|881|882|883|884|885| |917|918|919|
+---+---+---+---+---+---+-/ /-+---+---+---+
|920|921|922|923|924|925| |957|958|959|
+---+---+---+---+---+---+-/ /-+---+---+---+

CHARACTER CELL No.= HORIZONTAL POSITION + 40*VERTICAL POSITION

In TEXT mode there are 24 rows (0 to 23) of 40 chars (0 to
39)

4-74

4.2.12.2 GRAPH

Form:

[line number] GRAPH

The GRAPH statement causes the video display processor to be
initialized to provide a graphics display of 256 by 192
pixels. Normal text operations may still be performed but
there are only 32 characters on a line. The screen will be
cleared to the current background color and the text cursor
positioned to 0,0 (top left hand corner). The text cursor is
invisible in graphics mode. Any characters that are then
printed will be in the current foreground color.

In graphics mode, there is an additional invisible graphics
cursor.

After execution of the GRAPH statement, the video display
processor is in graphics mode. Text on the screen remains in
the color it was when it was printed. Printing beyond the
bottom of the screen rolls round to the top. The character
cell numbers as used by the SGET and SPUT statements are
shown below.

CHARACTER CELLS - GRAPH MODE

+---+---+---+---+---+---+-/ /-+---+---+---+
| 0 | 1 | 2 | 3 | 4 | 5 | |29 |30 |31 |
+---+---+---+---+---+---+-/ /-+---+---+---+
|32 |33 |34 |35 |36 |37 | |61 |62 |63 |
+---+---+---+---+---+---+-/ /-+---+---+---+
|64 |65 |66 |67 |68 |69 | |93 |94 |95 |
+---+---+---+---+---+---+-/ /-+---+---+---+
/ / / / / / / / / / /

/ / / / / / / / / / /
+---+---+---+---+---+---+-/ /-+---+---+---+
|704|705|706|707|708|709| |733|734|735|
+---+---+---+---+---+---+-/ /-+---+---+---+
|736|737|738|739|740|741| |765|766|767|
+---+---+---+---+---+---+-/ /-+---+---+---+

CHARACTER CELL No.= HORIZONTAL POSITION + 32*VERTICAL POSITION

In GRAPH mode there are 24 rows (0 to 23) of 32 chars (0 to
31).

4-75

PIXEL CO-ORDINATES

In graphics mode there are 256 pixels horizontally (0 to 255)
and 192 pixels (0 to 191) vertically. (0,0) is top left
corner of the screen. These coordinates are used by the
PLOT, UNPLOT and SPRITE statements.

The foreground and background colors for each group of 8
pixels horizontally is definable. (i.e.: only 2 different
colors per horizontal bar of 8 pixels). This restriction
does not apply to pixels colored by sprites.

Although there are only 192 pixels vertically on the screen,
the vertical coordinate may be varied between 0 and 255.
Pixels between 191 and 255 are "off screen". These screen
locations may be used for hiding sprites without having to
change their shape or color. For the SPRITE statement, the
vertical coordinates are offset by 1 pixel. A vertical
coordinate of -1 is at the top of the screen.

4-76

4.2.12.3 COLOUR

Form:

[line number] COLOUR [expression1] [,expression2]

The COLOUR statement is used to set the current foreground
and background colors. In text mode, this immediately affects
the whole screen. In graphics mode, it only affects
subsequent operations.

Expression 1 should evaluate to an integer between 0 and 15
to set the foreground color. Expression 2 should evaluate to
an integer between 0 and 15 to set the background color. The
color codes are given below.

If the foreground color only is given then the current
background color is used. If COLOUR is used with no
parameters, then the default of dark blue on cyan is used.

COLOR CODES

CODE COLOR CODE COLOR

 0 TRANSPARENT 8 MEDIUM RED
 1 BLACK 9 LIGHT RED
 2 MEDIUM GREEN 10 DARK YELLOW
 3 LIGHT GREEN 11 LIGHT YELLOW
 4 DARK BLUE 12 DARK GREEN
 5 LIGHT BLUE 13 MAGENTA
 6 DARK RED 14 GREY
 7 CYAN 15 WHITE

EXAMPLE:

COLOUR 12,11

This sets the foreground color to dark green and the
background to light yellow.

ADDENDUM: there is also an undocumented Basic command - SWAP
- which does a screen color substitution in GRAPH mode. To
use it, first there is a bug in one of the jumps in the code
that needs to be corrected: MWD(3390H)=1308H. A color
substitution table then has to be set up, this is stored in
the 16 bytes from >00A4 to >00B3. Initially these contain the
values >00 to >0F. The SWAP command goes through the screen
color table and if a pixel currently has the color code 0
then it replaces that with the color specified by the color
code in the first byte of the table. If the current color
code is 1 then it replaces that with the color specified by
the color code in the second byte of the table, and so on.
The color codes are as specified above.

4-77

4.2.12.4 PLOT

Forms:

[line number] PLOT <exp1>,<exp2> (a)
[line number] PLOT TO <exp3>,<exp4> (b)
[line number] PLOT <exp5>,<exp6> TO <exp7>,<exp8> (c)

The PLOT statement is used to plot points and draw lines.
PLOT is available only in graphic mode. If it is attempted
whilst in text mode the video display processor will be
switched to graphic mode before plotting.

The simplest form of the PLOT statement (a) will plot a point
in the current foreground color. The point plotted has a
horizontal coordinate of <exp1> and a vertical coordinate of
<exp2>. After the point has been plotted the graphic cursor
address will be set to this point.

The next form of the PLOT statement (b) will cause a line to
be drawn in the current foreground color from the current
graphic cursor location to the point having a horizontal
coordinate of <exp3> and a vertical coordinate of <exp4>.
After the line has been drawn the graphic cursor will be set
to <exp3>,<exp4>.

The next form of the PLOT statement (c) will cause a line to
be drawn in the current foreground color from the point
having a horizontal coordinate of <exp5> and a vertical
coordinate of <exp6> to the point having a horizontal
coordinate of <exp7> and a vertical coordinate of <exp8>.
After the line has been drawn the graphic cursor will be set
to <exp7>,<exp8>.

Both forms (b) and (c) may be followed by a 'TO <exp>,<exp>'
section which will continue plotting a line to the point
<exp>,<exp>. This extension may be repeated as long as there
is room on the BASIC line to do so.

The coordinates used for PLOT are pixel coordinates,
explained under the GRAPH statement.

NOTE :- When PLOTting lines the background color should

remain the same as when the screen was last
cleared (e.g., by a GRAPH statement). If the
background color is not the same, the limitation
of horizontal color resolution causes blocks to
be set to the current background color.

4-78

EXAMPLES:

100 COLOUR 4,7 ! DARK BLUE ON A LIGHT BLUE BACKGROUND
110 GRAPH ! GO INTO GRAPHIC MODE AND CLEAR SCREEN
120 PLOT 10,20 ! SET THE POINT HOR=10,VERT=20
130 PLOT 40,50 TO 100,105 ! DRAW A LINE FROM 40,50 TO 100,105
140 COLOUR 15 ! NOW DRAW WHITE LINES
150 PLOT TO 200,15 ! DRAW A LINE FROM 100,105 TO 200,15
155 REM
160 REM NOW DRAW A WHITE BOX ROUND THE WHOLE THING
165 REM
170 PLOT 0,0 TO 255,0 TO 255,191 TO 0,191 TO 0,0
175 WAIT 100
180 COLOUR 1 ! CHANGE TO BLACK LINES
185 REM
190 REM NOW DRAW VERTICAL BARS
195 REM
200 FOR I=20 TO 250 STEP 8
210 PLOT I,1 TO I,190
220 NEXT I
230 END

4-79

4.2.12.5 UNPLOT

Forms:

[line number] UNPLOT <exp1>,<exp2> (a)
[line number] UNPLOT TO <exp3>,<exp4> (b)
[line number] UNPLOT <exp5>,<exp6> TO <exp7>,<exp8> (c)

The UNPLOT statement is the opposite of PLOT. It is used to
erase points and lines. UNPLOT is available only in graphic
mode. If it is attempted whilst in text mode the VDP will be
switched to graphic mode before unplotting.

The simplest form of the UNPLOT statement (a) will unplot a
point having a horizontal coordinate of <exp1> and a vertical
coordinate of <exp2>. After the point has been unplotted the
graphic cursor address will be set to this point.

The next form of the UNPLOT statement (b) will cause a line
to be undrawn from the current graphic cursor location to the
point having a horizontal coordinate of <exp3> and a vertical
coordinate of <exp4>. After the line has been undrawn the
graphic cursor will be set to <exp3>,<exp4>.

The next form of the UNPLOT statement (c) will cause a line
to be undrawn from the point having a horizontal coordinate
of <exp5> and a vertical coordinate of <exp6> to the point
having a horizontal coordinate of <exp7> and a vertical
coordinate of <exp8>. After the line has been drawn the
graphic cursor will be set to <exp7>,<exp8>.

Both forms (b) and (c) may be followed by a 'TO <exp>,<exp>'
section which will continue unplotting a line to the point
<exp>,<exp>. This extension may be repeated as long as there
is room on the BASIC line to do so.

The coordinates used for UNPLOT are pixel coordinates. These
are explained under the GRAPH statement.

NOTE :- When UNPLOTting lines the current foreground

and background colors are not important, all
the points that are unplotted will be set to
the background color already associated with
that point.

4-80

EXAMPLES:

100 COLOUR 4,7 ! DARK BLUE ON A LIGHT BLUE BACKGROUND
110 GRAPH ! GO INTO GRAPHIC MODE AND CLEAR SCREEN
120 REM NOW DRAW A BOX
130 PLOT 0,0 TO 255,0 TO 255,191 TO 0,191 TO 0,0
140 WAIT 300 ! WAIT THREE SECONDS AND THEN REMOVE IT
150 UNPLOT 0,0 TO 255,0 TO 255,191 TO 0,191 TO 0,0
160 END

4-81

4.2.12.6 SHAPE

Form:

[line number] SHAPE <arg1>,<arg2>,<arg3>,<arg4>,<arg5>

The SPUT and SPRITE commands use predefined shapes. The SHAPE
statement is used to define these shapes.

A shape table is used to store these shapes and has 256
entries (0 to 255). An entry is in the form of 4 integers,
each of 16 bits. Each bit represents one pixel on the screen,
arranged in an 8 by 8 matrix as shown:

 First 16 bits/ * * * * * * * *
 \ * * * * * * * *
Second 16 bits/ * * * * * * * *
 \ * * * * * * * *
 Third 16 bits/ * * * * * * * *
 \ * * * * * * * *
Fourth 16 bits/ * * * * * * * *
 \ * * * * * * * *

Each 16 bits is arranged with the most significant bit at top
left and least significant at bottom right of the group of 16.

The 5 arguments of SHAPE are:

arg1 : Shape table entry to use (0 to 255)
arg2 : integer (16 bits) pattern of 1st & 2nd row of shape
arg3 : integer (16 bits) pattern of 3rd & 4th row of shape
arg4 : integer (16 bits) pattern of 5th & 6th row of shape
arg5 : integer (16 bits) pattern of 7th & 8th row of shape

It is often convenient to express the arguments as
hexadecimal constants. This means that each character in the
argument maps to four pixels in the shape.

EXAMPLE:

10 SHAPE 42,0FFFFH,0FFFFH,0,0

This defines shape 42 as a block which is 8 pixels by 4.

4-82

4.2.12.7 SPUT

Form:

[line number] SPUT <character cell number>,<what to put there>

The SPUT (Screen PUT) statement is used to transfer
characters or shapes to the screen. The effect depends on the
current screen mode.

In text mode "<what to put there>" is the ASCII code of the
character to print. This may be obtained by using the ASC
function.

In graphics mode "<what to put there>" is a shape table entry
(0 to 255) for the shape to display on the screen. The SHAPE
statement is used to define these shapes.

The character cell number is 0 to 959 in text mode and 0 to
767 in graphics mode. See the TEXT and GRAPH statements for
how these map onto the screen.

Example:

10 TEXT ! Text mode
20 CH=ASC("X") ! Get the ASCII code for an X
30 SPUT 80,CH ! Put X in cell number 80
35 WAIT 500
40 GRAPH ! Graphics mode
50 SHAPE 1,0,5A5AH,0,0 ! Define shape 1 as a row of dots
60 SPUT 140,1 ! Display dots in cell 140

4-83

4.2.12.8 SGET

Form:

[line number] SGET <screen cell number>,<variable>

The SGET (Screen GET) statement is used for reading
information from the video display. As for SPUT, the effect
depends on the display mode.

The variable must be a numeric variable. The cell number is
from 0 to 959 in text mode and 0 to 767 in graphics mode. The
mapping of these cells to the display is explained under the
TEXT and GRAPH statements.

In text mode the variable will receive the ASCII code of the
character in the specified display cell.

In graphics mode, the variable specifies the shape table
entry to receive the current shape in the specified display
cell. In graphics mode only, a constant may be used as the
second argument.

EXAMPLES:

A) 10 TEXT
 20 CH=ASC("X") ! Get the ASCII code for an X
 30 SPUT 160,CH ! Put X at start of line 4
 40 C=0 ! Declare variable C
 50 SGET 160,C ! Get code of char at start of line 4
 60 PRINT C ! Print ASCII code

B) 50 GRAPH
 60 SHAPE 1,0,5A5AH,0,0 ! Define shape 1 as a row of dots
 70 SPUT 128,1 ! Display dots at start of line 4
 80 SGET 128,10 ! Put shape at start of line 4 in shape 10
 90 SPUT 144,10 ! Display same shape half way along line 4

4-84

4.2.12.9 CHAR

Forms:

[line number] CHAR <ASCII code>,<exp1>,<exp2>,<exp3>
[line number] CHAR

The CHAR statement is used to redefine the character set
used for printing text.

The first argument is the ASCII code of the character to be
redefined. Exp1 to exp3 evaluate to 16 bit integers. This
forms a 48 bit pattern that maps onto the 6*8 character
cell:

 exp1 -> * * * * * *
 exp1 -> * * * * * * The 48 bits of the pattern
exp1/2 -> * * * * * * start from top left with
 exp2 -> * * * * * * the MSB of exp1 and work
 exp2 -> * * * * * * down to bottom right with
exp2/3 -> * * * * * * the LSB of exp3.
 exp3 -> * * * * * *
 exp3 -> * * * * * *

In text mode the change will take effect next time a TEXT
statement is executed. In graphic mode the change takes
effect immediately.

A CHAR statement with no arguments will load the standard
character set back again.

EXAMPLE:

10 C = ASC("d") ! Find ASCII code of char to change
20 CHAR C , 0820H,8628H,0A380H
30 TEXT ! Effect the change
40 PRINT "ddddddddd" ! Look at the result

This example changes the small "d" to look like lower case
instead of a small capital.

4-85

4.2.12.10 SPRITE

Form:

[line number] SPRITE <arg1>,<arg2>,<arg3>[,<arg4>,<arg5>]

Where:

arg1 = sprite number (0 to 31)
arg2 = horizontal pixel coordinate, top left of sprite
arg3 = vertical pixel coordinate, top left of sprite
arg4 = shape number to use for the pattern (0 to 255)
arg5 = sprite color (0 to 16)

A sprite is a shape which may be moved to any point on the
screen by specifying the pixel coordinates. Up to 32 sprites
maybe on the screen at any one time.

Each of the 32 sprites has it's own plane, numbered from 0
to 31. When two sprites overlap, the lower numbered sprite
passes over the top of the higher numbered. All sprites pass
over background graphics end text. This feature may be used
to build up a 3D effect. Sprite 0 appears closest to the
viewer with sprite 31 farthest away.

The SPRITE statement is used to display a sprite on the
screen. The first argument specifies which of the 32 sprites
is to be used and hence its priority over other sprites.

The second and third arguments specify where to put the
sprites in pixel coordinates. These are explained under the
GRAPH statement.

The shape of the sprite is defined by the SHAPE statement.
Which shape to use is defined by argument 4. The color of
the sprite, from 0 to 15, is defined by the last argument.
See the COLOUR statement for a list of colors.

If the last two arguments are omitted, the sprite in the
specified plane is moved without changing shape or color.

Normally each bit of the shape is mapped onto one pixel of
the screen (see SHAPE statement). This may be altered by
using the MAG statement. Multicolored shapes may be built up
by overlaying sprites of different colors.

4-86

NOTE: Sprites must be first used in order from 0 upwards. A
sprite will have no effect unless the previous sprite plane
sprite has been used. If a higher sprite plane is needed
first, the lower ones must first be initialized to an off
screen position or empty shape. Only 4 sprites may be active
together on one screen line.

EXAMPLE:

 10 COLOUR 1,0
 20 GRAPH
 30 COLOUR
 40 A=01038H
 50 B=0547CH
 60 C=09244H
 70 D=04482H
 80 NME=42
 90 SHAPE NME,A,B,C,D
100 MAG 1,0
110 FOR X=0 TO 1000 STEP 16
120 FOR Y=0 TO 175
130 SPRITE 0,X,Y,NME,6
140 SPRITE 1,X+16,Y,NME,10
150 SPRITE 2,X+32,Y,NME,4
160 SPRITE 3,X+48,Y,NME,12
170 NEXT Y
180 NEXT X

This program first defines a shape. Then, using the MAG
statement to double their size, moves 4 different colored
sprites of the defined shape across the screen.

Sprites at the screen edges

As sprites are moved to the edges of the screen they may be
'trickled' onto and off of the display. This means that the
sprite appears or disappears gradually.

Using horizontal coordinates for the top left of the sprite
approaching 255 will trickle the sprite on and off the right
hand side of the screen. Vertical coordinates approaching
191 will trickle on and off the bottom of the screen. To
trickle at the top, use coordinates working back from -1.

Since all 255 possible horizontal coordinates are used for on
screen positions, it is not possible to trickle at the left
by specifying coordinates. This is achieved by a special
mode. If the color of the sprite is set to the required color
plus 128 the whole sprite is shifted 32 pixels to the left.
In this mode, the sprite may trickle at the left by using
horizontal coordinates between 0 and 31.

4-87

4.2.12.11 MAG

Form:

[line number] MAG <magnification>,<definition size>

The MAG statement is used to define how sprites will be
displayed on the screen.

The magnification argument allows the sprite dimensions to
be doubled (area quadrupled) with a corresponding reduction
in resolution. The definition size allows a similar increase
in size using more shape table data to retain resolution. The
combination of the two allows sprites to be magnified up to
four times (16 times area).

If the sprite magnification is zero every bit in the shape
definition for the sprite will be displayed as one pixel, if
the sprite magnification is not zero then each bit in the
shape definition will be displayed as two pixels horizontally
and two pixels vertically.

If the sprite definition size is zero then one shape table
entry will be used to build the sprite, if it is non-zero
then four shape table entries will be used to build the
sprite. The shape table entries used for the sprite in this
mode must start on a four entry boundary.

For the large sprite definition the four shape table entries
used are joined in the following way to build a 16x16 point
sprite.

+---------+---------+
| shape n |shape n+2| where "n" is the shape number
+---------+---------+ given to the sprite
|shape n+1|shape n+3| statement. Valid values
+---------+---------+ of "n" are 0,4,8,12,16 etc.

See the SPRITE command for an example of the use of MAG.

4-88

4.2.13 ENTER

Form:

[line number] ENTER <string>

The ENTER statement is used to enter new program lines from
the program. The string may be a string constant in quotes or
a string variable.

As when entering programs at the keyboard, a statement
without a line number is executed immediately. Syntax
checking is performed as normal. If the line number already
exists, it is replaced. Entering just a line number deletes
that line.

EXAMPLES:

A) Simple use of the ENTER statement:

ENTER "500 PRINT 'HELLO'"

NO SUCH LINE NUMBER

LIST

500 PRINT "HELLO"

B) A program using ENTER to input a function:

 10 DIM LIN(10),IP(10)
 20 INPUT "VALUE FOR X" X
 30 INPUT "FUNCTION (Y=FN(X))" $IP(0)
 40 $LIN="100 "+$IP(0)
 50 ENTER $LIN(0)
 60 GOSUB 100
 70 PRINT Y
 80 STOP
100 REM FUNCTION REPLACES THIS LINE
120 RETURN

RUN

VALUE FOR X? 2
FUNCTION (Y=FN(X)): Y=SIN(X)*COS(X)
-0.3784
Stop at 80

This program allows the user to type in a function (in valid
BASIC syntax) which is then evaluated. Care should be taken
with programs that modify themselves in this way. They are
extremely difficult to debug.

4-89

4.2.14 TON and TOF

Forms:

[line number] TON
[line number] TOF

Statement tracing allows the programmer to follow the
execution of a BASIC program. The TON and TOF statements turn
statement tracing on and off respectively. When tracing is
enabled, a message is output as each line is executed. This
is of the form:

Statement No. xxx

Where xxx is the line number. If there are further statements
on the same line, the trace output will continue with:

Statement No. xxx.1
Statement No. xxx.2
 etc.

TON and TOF entered for immediate execution will allow
tracing of a whole program to be enabled or disabled.
Entering these statements as lines in the programs allows
tracing to be turned on for just a specific part of the
program.

EXAMPLE:

The example program from the ENTER statement,
(previous section) would produce:

TON
RUN

Statement No. 10
Statement No. 20
VALUE FOR X? 2
Statement No. 30
FUNCTION (Y=FN(X)): Y=SIN(X)*COS(X)
Statement No. 40
Statement No. 50
Statement No. 60
Statement No. 100
Statement No. 120
Statement No. 70
-0.3784
Statement No. 80

NOTE: Statement tracing has some limitations. Care should be
used when interpreting the results of jumps into and out of
the middle of multiple statement lines.

4-90

4.3 BASIC FUNCTIONS

4.3.1 Mathematical functions

4.3.2 String functions

4.3.3 Input/Output functions

4.3.4 Memory functions

4.3.5 System functions

4.3.6 Other functions

4-91

4.3.1 Mathematical Functions

4.3.1.1 ABS

Form:

[line number] <variable> = ABS(<expression>)

The absolute value function (ABS) obtains the absolute value
of a positive or negative number. The argument entered
following the function name is the variable name or numeric
value for which the absolute value is required. The function
returns a non-negative argument unaltered and returns the
absolute value of a negative argument.

Example:

10 INPUT X
20 PRINT SQR(ABS(X))
30 STOP

4.3.1.2 ATN

Form:

[line number] <variable> = ATN(<expression>)

The argument entered following the function name is the ratio
representing a tangent function. The function returns the
corresponding angle in radians. Multiply the number of
radians by 180/3.14159265 (Pi) to obtain the angle in
degrees.

10 INPUT X
20 D = ATN(X)*(180/3.14159265)
30 PRINT D
40 STOP

Executing the above example produces:

? 5.9246
80.419473251

4-92

4.3.1.3 SIN and COS

Forms:

[line number] <variable> = SIN(<expression>)
[line number] <variable> = COS(<expression>)

The argument entered following the function name represents
an angle in radians. When the angle is measured in degrees,
multiply the number of degrees by 3.14159265 (Pi) /180 to
obtain the angle in radians. The function determines the
quadrant corresponding to the argument and returns the
function value.

Example:

10 INPUT N
20 PRINT SIN(N);COS(N);
30 STOP

Executing the above example produces:

? 1.25
0.94898461936 0.31532236237

4.3.1.4 EXP

Form:

[line number] <variable> = EXP(<expression>)

The argument entered following the function name is an
exponent of "e" (the base of natural logarithms). The
function returns the value of "e" raised to the power
specified in the argument.

Example:

10 INPUT E
20 PRINT EXP(E)
30 STOP

Executing the previous example produces:

? 35
1.5860134525E15

4-93

4.3.1.5 FRA

Form:

[line number] <variable> = FRA(<expression>)

The fractional part function returns the fractional portion
of the expression. The expression entered after the function
name is the value for which the fractional part is required.

EXAMPLE:

10 A= 5.23479
20 B= FRA(A)
30 PRINT A,B

RUN

5.23479 0.23479

4-94

4.3.1.6 INT

Form:

[line number] <variable> = INT(<expression>)

The integer part function returns the integer portion of the
expression. The INT function is useful in modular arithmetic
and for correcting errors resulting from truncation or
rounding of functions. The expression entered following the
function name is the value for which the integer portion is
required.

EXAMPLE:

10 INPUT Y
20 IF INT(Y/2) <> Y/2 THEN LOTO 50
30 PRINT "Y IS AN EVEN NUMBER"
40 STOP
50 PRINT "Y IS AN ODD NUMBER"
60 STOP

RUN

? 75
Y IS AN ODD NUMBER
Stop at 60

NOTE: There is no rounding carried out on the argument before
the INT operation is carried out. For example:

INT(1.9999999999) = 1 NOT 2

Whilst this is logically correct, it may cause problems with
expressions such as

INT(X^Y)

due to the rounding errors in exponentiation and other
mathematical functions.

4-95

4.3.1.7 LOG

Form:

[line number] <variable> = LOG(<expression>)

The argument entered following the function name is the value
for which the natural logarithm (base e) is required. The
function returns the natural logarithm of the argument.
Attempts to find the logarithm of a non-positive argument
will result in an error.

Example:

10 INPUT L
20 FRINT LOG(L)
30 STOP

Executing the above example produces:

? 5280
8.5716813767

4.3.1.8 MOD

Form:

[line number] <variable> = MOD(<expression1>,<expression2>)

The MOD function performs modulus division between the two
arguments. The result is the remainder of expression1 divided
by expression2. The arguments are truncated to integers, the
result is therefore always an integer.

EXAMPLE:

10 PRINT M0D(9,7)

RUN

2

4-96

4.3.1.9 SGN

Form:

[line number] <variable> = SGN(<expression>)

The sign function returns the sign of the expression. The
result is as follows:

If <expression> is negative the result is -1
If <expression> is zero the result is 0
If <expression> is positive the result is 1

EXAMPLE:

10 V=42
20 A=SGN(V) : B=SGN(-567.45) : C=SGN(0)
30 PRINT A;B;C

RUN

1 -1 0

4.3.1.10 SQR

Form:

[line number] <variable> = SQR(<expression>)

The square root (SQR) function returns the square root value
of the specified argument. The argument entered following the
function returns the square root of the argument. An error
message is produced if the argument is negative.

Example:

10 INPUT K
20 PRINT SQR(K)
30 STOP

Executing the above example produces:

? 2
1.4142135623

4-97

4.3.2 String Functions

Throughout this section, <string> may be a literal string in
quotes or a string variable starting with "$". Section 6
gives More details of string operations.

4.3.2.1 ASC

Form:

[line number] <variable> = ASC(<string>)

The ASCII character conversion (ASC) function returns the
decimal ASCII numeric value of the first character of the
specified string function.

Example:

10 $A="B"
20 B=ASC [$A]
30 $C=%B+020H
40 D=ASC [$C]
50 PRINT $A,B,$C,D
60 STOP

RUN

B 66 b 98
STOP AT 60

4.3.2.2 LEN

Form:

[line number] <variable> = LEN(<string>)

The length (LEN) function returns the number of non-null
characters starting at the evaluated address. The argument of
the LEN function must be specified as a string by either the
"$" or "string constant" operators.

Example:

10 $I="ABC"
20 J=LEN($I)
30 K=LEN("ABCDEFGHIJKLMNOP")
40 PRINT J,K
50 STOP

Executing the above example produces:

3 16

4-98

4.3.2.3 MCH

Form:

[line number) <variable> = MCH(<string1>,<string2>)

The character match function (MCH) returns the number of
characters to which the two strings agree. A value of zero
indicates no match.

Example:

10 $C="ABCD"
20 M=MCH("AB",$C)
30 PRINT M
40 STOP

Executing the above example produces:

2

4.3.2.4 POS

Form:

[line number] <variable> = POS(<string1>,<string2>)

The position function returns the character position of
string1 in string2. A character position of 0 indicates that
string2 does not contain string1.

EXAMPLE:

10 $C="ABCD"
20 S=POS("BC",$C)
30 PRINT S
40 STOP

RUN

2

4-99

4.3.3 Input and Output Functions

4.3.3.1 CRB

NOTE: An understanding of the CORTEX hardware is required to
successfully use any of the CRU functions. See also BASE
statement.

Forms:

[line number) <variable> = CRB(<expression>)
(line number] CRB(<expression1>) = <expression2>

A CRU bit, addressed relative to a base displacement, is
either read or stored according to program context. The
displacement ranges from -128 to +127. The function returns a
1 if the CRU bit is set, and a 0 if not set. Likewise, the
selected CRU bit is set to 1 if the assigned value is non
zero and to 0 if the assigned value is zero. For example:

CRB(10)=0

will clear the tenth bit relative to the base, while

CRB(11)=1 or CRB(11)=345

will set the eleventh bit on. Also,

IF CRB(5) THEN J=4

4-100

4.3.3.2 CRF

NOTE: An understanding of the CORTEX hardware is required to
successfully use any of the CRU functions. See also BASE
statement.

Forms:

[line number] <variable> = CRF(<expression>)

[line number] CRF(<expression1>) = <expression2>

The CRU field function is used to transfer up to 16 bits of
data to or from the CRU. The expression specifies the number
of bits to be transferred. These bits are transferred to or
read from the CRU starting at the address set by the BASE
statement. The specified number of bits ranges from 0 to 15.
If 0, then 16 bits will be transferred. For example:

CRF(0) = -1

transfers 16 bits (hex "FFFF") to the CRU address specified
by the BASE statement. While,

VAL = CRF(8)

reads 8 bits from the CRU base address and stores the result
in VAL.

4-101

4.3.3.3 KEY

Form:

[line number] <variable> = KEY(<expression>)

The KEY function reads the keyboard while a program is
running. It allows input to be accepted without causing the
program to stop and wait for it. This is particularly useful
in games applications.

When the expression is 0 the ASCII value of the last key
struck is returned and the key register reset (This means
another key code may now be accepted).

If the expression is non-zero, it is compared with the last
key struck. If they are the same, a value of 1 is returned
and the key register reset. Otherwise, a value of 0 is
returned. For example:

I = KEY(0)

returns the last key struck, or a 0 if no key was pressed.

IF KEY(041H) THEN PRINT "A"

prints A if the last key entered was "A" (The ASCII code for
A is 41 in hexadecimal, it could also be expressed as 65 in
decimal).

EXAMPLE:

10 A=KEY(0)
20 IF A=0 THEN GOTO 10
30 PRINT A
40 GOTO 10

This will print out the values of any keys pressed.

4-102

4.3.4 Memory Functions

When manipulating memory remember that the CORTEX is a 16
bit machine:

1 Byte - 8 bits
1 Word - 2 bytes - 16 bits

4.3.4.1 ADR

Form:

[line number] <variable> = ADR(<variable>)

The ADR function returns the address in memory of the
specified variable, string variable, array element or byte
offset in an array element. This is used in conjunction with
the LET (assignment), PRINT and CALL statements.

Valid uses are:-

B = ADR(<var>)
PRINT #, ADR(<var>)
CALL, ADR(<var>)

where <var> can be one of the following:

A, $A, A(index), $A(index), or $A(index ; offset)

This function returns the address of the first byte (i.e.,
lowest memory address) for the specified variable.

EXAMPLE:

10 A=0 : B=0
20 CALL "GETAB" , GAB , ADR(A) , ADR(B)
30 PRINT A,B

This program passes the addresses of A and B to the Assembly
language routine. GAB is variable previously initialized to
the start address of the GETAB routine. This routine can now
access A and B to return results that BASIC can print.

4-103

4.3.4.2 BIT

Forms:

[line number] <variable> = BIT(<variable>,<bit>)
[line number] BIT(<variable>,<bit>) = <expression>

The bit modification (BIT) function reads or modifies any bit
within a variable. The function returns a 1 if the bit is set
and a 0 if not set. Likewise, the selected bit is set to one
if the assigned value is non-zero, and to zero if the
assigned value is zero. For example:

IF BIT (A, 31) THEN PRINT "ON"

prints "ON" if bit 3l of variable A is on; while

BIT (A, 30)=1 or BIT (A, 30)=750

turns "on" the 30'th bit of variable A.

4-104

4.3.4.3 MEM

Forms:

[line number] <variable> = MEM(<address>)
[line number] MEM(<address>) = <expression>

The memory modification (MEM) function reads or modifies a
memory location (byte) as specified by the argument. For
example:

M = MEM(0AA00H)

reads the byte from location hex "AA00", while

MEM(0AA00H) = 15

stores a decimal 15 (hex "F") at location hex "AA00"

4.3.4.4 MWD

Forms:

[line number] <variable> = MWD(<address>)
[line number] MWD(<address>) = <expression>

The memory word modification function reads or modifies a
memory word as specified by the argument. For example:

M=MWD(0FF00H)

reads the word from location hew "FF00", while

MWD(0AA00H) = 256

stores a decimal 256 (hex "100") in the memory word at
location hex "AA00".

4-105

4.3.5 System Functions

4.3.5.1 SYS

Form:

[line number] <variable> SYS(<expression>)

The system function returns the value of the system variable
defined by the value of <expression>. System variables
returned are:

HELP FLAG SYS(0)
LAST ERROR NUMBER SYS(1)
LAST ERROR LINE No. SYS(2)
CRU BASE ADDRESS SYS(3)
ERROR FLAG SYS(4)
UNIT FLAG SYS(5)
ESCAPE DISABLE FLAG SYS(6)
START OF USER RAM SYS(7)
LINE EDIT ERROR FLAG SYS(8)
VDP MODE SYS(9)
FDC INTERRUPT FLAG SYS(10)
VDP STATUS FLAG SYS(11)
BASIC ENTRY POINT SYS(12)
INTERRUPT 1 VECTOR SYS(13)
INTERRUPT 4 VECTOR SYS(14)
MID O VECTOR SYS(15)
A/O VECTOR SYS(16)
ILLEGAL OPCODE VECTOR SYS(17)
PRINT PREPROCESSOR SYS(18)
BREAKPOINT O VECTOR SYS(19)

System variables 13 to 19 return information about system
vectors. These are intended for the advanced user and may be
used to set up service routines of various types.

4-106

4.3.5.2 SYS(0)

System function 0 returns the current line number for help on
input. As explained under the INPUT statement, a line number
may be specified for a help routine if invalid input is
attempted.

EXAMPLE:

10 INPUT ?120 A
20 PRINT SYS(0)
30 STOP
120 PRINT "WRONG, TRY AGAIN" : GOTO 10

RUN

? <any number>
120

4.3.5.3 SYS(1)

System function 1 returns the number of the last error that
occurred. It can be used in conjunction with the ERROR
statement to write an error handler routine.

EXAMPLE:

10 ERROR 100
20 A=5/0
30 STOP
100 PRINT SYS(1)
130 STOP

RUN

28

The error number for divide by zero is 28 (see Appendix C).

4-107

4.3.5.4 SYS(2)

System function 2 returns the line number where the last
error occurred. Taking the example program for SYS(1) and
adding the line:

110 PRINT SYS(2)

we get:

RUN

28
20

i.e.,: error 28 occurred at line 20.

4.3.5.5 SYS(3)

System function 3 returns the current CRU base address as set
by the BASE statement.

EXAMPLE:

10 BASE 0100H
20 PRINT # SYS(3)

RUN

0100H

4-108

4.3.5.6 SYS(4)

System function 4 returns the current line number for error
processing, as set by the ERROR statement. Adding a further
line to the SYS(1) example program:

15 PRINT SYS(4)

RUN

100
28
20

Error 28 occurred at line 20 and error trapping caused a jump
to line 100.

4.3.5.7 SYS(5)

System function 5 returns information about which devices
have been enabled or disabled with the UNIT statement. The
value returned is a 16 bit integer. Each bit a corresponds to
a device:

 MSB LSB
 BIT: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DEVICE: 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

If the device is enabled, the bit is set to 1. If it is
disabled, the bit is set to 0. Standard CORTEX devices are:

1 - Keyboard and visual display
2 - RS232C port
3 - Cassette interface
4 - Centronics parallel interface

EXAMPLE:

10 U= SYS(5)
20 WRD=16
10 IF BIT(U,WRD+14) THEN PRINT "RS232C IS TURNED ON"
40 ELSE PRINT "RS232C IS TURNED OFF"

The word offset is needed because the integer is stored in
the second word of U.

4-109

4.3.5.8 SYS(6)

System function 6 returns the escape disable flag. This is -1
(0FFFFH) if escape is disabled (NOESC statement has been
executed) and 0 if escape is enabled (normal state or after
ESCAPE statement).

EXAMPLE:

10 NOESC
20 PRINT SYS(8)
30 ESCAPE
40 PRINT SYS(8)

RUN

-1
0

4.3.5.9 SYS(7)

System function 7 returns the current lower limit of the user
RAM. This is an area completely unused by CORTEX software. It
is available to the assembly language programmer. The top of
this area is set by the NEW command. The default value is
1000 above the start.

EXAMPLE:

PRINT # SYS(7)

60EEH

4.3.5.10 SYS(8)

System function 8 returns the state of the line editing flag.
Normally lines entered with an error are presented for
editing to correct the error. In this state SYS(8) will have
a value of 0. If line editing has been disabled using the
ERROR command, SYS(8) will have a value of -1 or FFFFH.

4-110

4.3.5.11 SYS(9)

System function 9 returns the current display mode. A value
of 0 is returned for TEXT mode and -1 (0FFFFH) for GRAPH
mode.

EXAMPLE:

10 TEXT : PRINT SYS(9)
15 WAIT 200
20 GRAPH: PRINT SYS(9)

RUN

0
-1

4.3.5.12 SYS(10)

System function 10 returns the state of the floppy disc
interrupt flag. This indicates whether or not the floppy disc
controller has requested an interrupt. It is set by the
default interrupt service routine and allows operation of the
floppy disc interface from a BASIC program.

If no interrupt has been received it will have a value of 0,
when an interrupt is received it is set to -1. It is up to
the user to reset the flag when the interrupt has been
serviced.

4-111

4.3.5.13 SYS(11)

System function 11 returns the value of the video display
processor internal status register. This is an 8 bit value as
shown below.

 MSB LSB
+---+---+---+---+---+---+---+---+
| F | 5S| C | Fifth sprite no. |
+---+---+---+---+---+---+---+---+

F is the interrupt flag. VDP interrupts are not enabled in
the CORTEX but the F flag will still be set to 1 at the end
of each frame scan. It is reset to 0 when the status register
is read (i.e., when SYS(11) is executed).

5S is a flag that is set when more than 4 sprites are active
together on a line. The fifth sprite will not be visible if
this happens. The number of the sprite that has disappeared
is given by the five least significant bits of the status
register. This flag and the sprite number are only valid
when F is 0.

C is the coincidence flag. This is set whenever two or more
sprites on the screen have overlapping pixels. The C flag is
reset to 0 when the status register is read.

Note that the fifth sprite information is not valid when F is
1. If F is set, which will normally be the case, a second
call to SYS(11) must be used to get the 5S information.

4.3.5.14 SYS(12)

System function 12 returns the BASIC entry point. A jump to
this location from a machine code routine or the Monitor will
warm start into BASIC. The correct workspace pointer is set
for BASIC and the current program is not deleted.

A common use for this jump is to get back into BASIC whilst
leaving the Monitor breakpoints set. The G command will clear
all breakpoints.

4-112

4.3.5.15 SYS(13)

System function 13 returns the location of the interrupt
level 1 vector. The vector consists of 2 words for the
interrupt service routine (ISR). The first word is the ISR
workspace pointer and the second is the ISR entry point.

This vector is normally not set. To add your own level 1 ISR,
this vector should be set to point to your routine. Return is
via a RTWP instruction.

The only hardware connected to interrupt level 1 in the
standard CORTEX is the E-BUS timeout. This will only cause an
interrupt if specifically enabled by the user.

4.3.5.16 SYS(14)

System function 14 returns the location of the interrupt
level 4 vector. The vector consists of 2 words for the
interrupt service routine (ISR). The first word is the ISR
workspace pointer and the second is the ISR entry point.

This vector is normally not set. To add your level 4 ISR,
this vector should be set to point to your routine. It will
be called after CORTEX has checked the standard devices for
interrupt. Checking is done in the following order:

1) Keyboard interrupt
2) Floppy disc interrupt
3) 9902 interrupt
4) User trap via level 4 vector

Return from the user routine is via a RTWP instruction.

4.3.5.17 SYS(15)

System function 15 returns the location of the MID 0 vector.
This enables the effect of opcode 0 to be defined. The vector
is one word which is the entry point for the routine. Return
is via a RTWP instruction.

4-113

4.3.5.18 SYS(16)

System function 16 returns the location of the arithmetic
overflow vector. The arithmetic overflow flag is not enabled
for CORTEX BASIC. To use arithmetic overflow a service
routine should be provided.

The vector is one word which is the entry point for the
routine. Return is via a RTWP instruction. The return context
may be used to find the cause of the overflow.

4.3.5.19 SYS(l7)

System function 17 returns the location of the illegal opcode
vector. The standard routine simply prints 'ILLEGAL OPCODE'
to the screen.

An alternative routine may be provided by setting the illegal
opcode vector. This is one word pointing to the entry point
of the routine. Return is via a RTWP instruction. R14 may be
used to find the opcode that caused the interrupt.

4.3.5.20 SYS(18)

System function 18 returns the location of the print
preprocessor vector. If set up, the preprocessor is called
before output to the screen or any other device enabled by
the UNIT statement. This allows any character translation or
other operations to be performed on the print buffer.

The vector consists of two words, the first points to the
routines workspace and the second is the entry point. Return
is via a RTWP instruction. The start and end of the message
to be printed are given by R7 and R8 respectively of the
calling routine workspace. These may be found by indexing on
R13 of the service routine workspace.

4-114

4.3.5.21 SYS(19)

System function 19 returns the location of the breakpoint 0
vector. As explained in sections 7 and 8, breakpoint number 0
has the extra feature of allowing a user routine to be called
when the breakpoint is reached.

The vector is one word giving the entry point of the routine.
Return is via an RT instruction.

4-115

4.3.6 Other Functions

4.3.6.1 COL

Form:

[line number] <variable> = COL(<exp1>,<exp2>)

The color function returns the color of the pixel at x,y
coordinates of <exp1>,<exp2>. These are pixel coordinates as
explained under the GRAPH statement. The color code is
returned as an integer value. Color codes are listed under
the COLOUR statement.

EXAMPLE:

A=COL(100,92)

A becomes equal to the color code for the pixel at 100,92.

4-116

4.3.6.2 RND

Form:

[line number] <variable> = RND

The random number function is used to generate a pseudo
random number between 0 and 1. For example:

PRINT RND

might return a number like:

.2113190

To get a random number between 0 and a value, multiply RND
by that value.

Example:

A=RND*10

returns a random number between 0 and 10.

The seed used for random number generation is set by the
RANDOM statement.

4-117

4.3.6.3 TIC

Form:

[line number] <variable> = TIC(<expression>)

The time difference function samples the real time clock. It
returns the current TIC value minus the expression value. For
example:

T = TIC(0)

obtains the current time (in clock ticks, use TIME to get it
in hours/minutes/seconds)

D = TIC(T)

calculates the elapsed time in ticks since we stored the time
in T.

i.e.: TIC(T) is the same as TIC(0) - T

Each clock tick is 10 milliseconds, which is one hundredth of
a second.

EXAMPLE:

10 W = RND*1000
20 WAIT W
40 T=TIC(0)
50 INPUT "PRESS RETURN" Z
60 R = TIC(T)
70 PRINT "YOU TOOK" ; R/100 ; "SECONDS"

This program is a reaction timer. First a random delay
between 0 and 10 seconds is generated. Then the time is
noted and a message output. When the user types return, the
time delay is noted. The result is printed out.

4-118

5. THE VIDEO DISPLAY PROCESSOR

This section describes the video display processor (or "VDP"
for short) used for graphics displays. Use this section in
conjunction with section 4 which gives detailed syntax for
the graphics statements and functions.

DISPLAY MODES

The CORTEX computer contains an advanced video processor (the
TMS9928A or the TMS9929A) that has 16K bytes of dynamic
memory dedicated to it. This memory is known video RAM (or
"VRAM" for short) and is used to store all the information
needed to generate complex graphic displays including
character sets, shapes, color tables, etc. This 16K bytes of
memory is completely separate from main program memory.

The VDP controls all access to the VRAM and also provides the
refresh cycles needed by it. The TMS9995 accesses the VRAM
via the memory-mapped VDP which appears as a single word in
the CORTEX address space. As a result complex graphic
displays do not take up large areas of main memory.

16 distinct colors are provided by the VDP under the control
of the 'COLOUR' statement. These colors are:

transparent light yellow dark yellow white
medium green light green dark green grey
medium red light red dark red black
magenta light blue dark blue cyan

With CORTEX BASIC, the VDP is only used in either text mode
or graphics 2 mode. Other modes are available to the assembly
language programmer who should refer to the TMS9928A Data
Sheet for full information. The VDP should always be returned
to one of these 2 modes before returning to BASIC.

Note: Direct manipulation of the video display processor
should not be attempted from a BASIC program as this will
have unpredictable effects on the behavior of the system.

5-1

TEXT MODE

In this mode the TV screen has 24 lines of 40 characters that
are displayed in the current foreground color with the
backdrop set to the current background color. Scrolling is
automatically performed when the screen becomes full.

The VDP is initialized in text mode when the computer is
first switched on: you can return to this mode at any time by
using the 'TEXT' statement.

A 'LIST' command will also force the VDP into text mode.

Note: No graphic operations are allowed in text mode.

GRAPHIC MODE

When graphic mode is entered (using the 'GRAPH' statement)
you have the full use of CORTEX BASIC's graphic commands
(e.g., 'PLOT', 'SHAPE', 'SPRITE', etc., as well as textual
displays.

The display has 256 dots horizontally and 192 dots
vertically: these dots are referred to as pixels and may take
on any of the 16 available colors (with certain limitations
horizontally which will be explained below).

The pixels that are set are in the foreground color and those
that are not are in the background color. The foreground and
background colors are set using the 'COLOUR' statement and
may be changed to give multiple colors on the screen at any
one time.

The SPRITE, PLOT and UNPLOT statements use pixel coordinates.
Both X and Y coordinates range from 0 to 255. Since there are
only 192 vertical screen positions, those from 192 to 255 are
"off screen" and may be used for hiding predefined sprites.

This screen of 256x192 pixels is further divided into blocks
of 8x8 pixels called cells. These are used by the SPUT and
SGET statements. There are 32 of these cells horizontally and
24 vertically. Maps of the cells in TEXT and GRAPH modes are
given in section 4 and Appendix F.

5-2

Within each of these cells there are two colors defined for
each horizontal row of 8 pixels, one color (foreground color)
for the pixels that have been set on and another color
(background color) for those that have not. The pairs of
colors for each pixel row within the cell may be set
independently of the others.

When printing text in graphics mode, use is made of the cells
described above to hold characters. This means that there are
only 32 characters available per line in graphics mode
compared to the 40 in text mode. If printing past the bottom
of the screen is attempted the screen will not scroll but
will wrap around to the top of the screen.

As there is no visible cursor in this mode, the user should
return to text mode via the 'TEXT' statement before editing a
line, listing a program, etc.

The text characters are displayed in the current foreground
color with the rest of the cell set to the current background
color. The foreground and background colors may be changed
during the printing of text to give more than one color of
text on the screen at any one time.

In front of the pixel display are 32 other 'planes'. Each of
these planes is capable of holding an object called a sprite.
The top plane is numbered '0' and the one nearest the pixel
display is numbered '31'. These planes are given priorities
such that a sprite will conceal part of another sprite on a
higher numbered plane and the pixel display if it overlaps
them.

Apart from the sprite, the entire sprite plane is
transparent. This feature allows the user to create a 3-D
effect on the display.

5-3

Arrangement of video display planes

Each sprite can be set to any one of the 16 colors. Any
pixels of the sprite that are not set are transparent and
sprites underneath it will show through. If there are no
sprites under it then the pixel display will show through.

The shape of the sprite is defined using the 'SHAPE'
statement and its position and color on the screen are set
using the 'SPRITE' statement. The 'MAG' statement is used to
define the size of the sprite and how many shape table
entries are used to form the sprite shape.

Up to 32 sprites may be active at one time. However, on any
one horizontal pixel line, only 4 may be visible. If more
than 4 sprites are active together on a line, the one of
lowest priority (i.e.: nearest the backdrop) will be
invisible.

Note: Sprites are only available in graphic mode.

5-4

Shapes defined in the shape table may also be placed onto the
pixel display using the 'SPUT' statement. Thus a sprite that
will not move for some time may be transferred onto the
backdrop to free the sprite plane for other use.

The 'SGET' statement is used to pull a shape from the screen
into the shape table. Each bit that is 'on' (i.e.: in the
foreground color for that group of 8 pixels) is set to 1 in
the shape table entry.

NOTE: 'SPUT' and 'SGET' have different effects in text mode,
see section 4.

In addition to the 32 sprite planes, pixel display and
backdrop there is one further plane behind all the others.
This is known as the external video plane.

The hardware for using external video is not implemented in
the CORTEX. To add this feature the external video should be
mixed externally to the 9928 and gated with the color
difference outputs. These outputs indicate when external
video should be active. The TMS9900 family data book gives
further details of how to do this.

If external video has been implemented, this plane appears
behind all the others. It will only show through where all
other planes, including the backdrop, are set to transparent.
In the absence of external video, the external video plane
will appear black.

5-5

This page is intentionally blank

6. CHARACTER STRINGS

6.1 General

This section explains the use of character strings in CORTEX
BASIC. The methods used are different from those found on
many microcomputer systems. This approach has been adopted to
obtain the fastest possible execution speed. Once the
differences have been mastered, string handling on the CORTEX
is very powerful.

A character string is a group of ASCII characters, for
example: "ABCDE". Literal strings of this sort are enclosed
in quotes, ' or ". The same type of quote must end the string
as started it. Thus: 'ABC"DE' is a valid string, the "
character being part of the string.

6.2 String Variables

Strings may be stored in BASIC variables. When a variable is
being used to store a string it is preceded by a $ sign. A
string variable may be assigned a value by the LET statement:

LET $A="ABCD"
LET $B=$A

or (since LET is optional):

$A="ABCD"
$B=$A

Note that $A is the same variable as A. The $ indicates that
it is being used to store a string.

Non printable characters may be included in a string by
enclosing the hexadecimal ASCII code in angle brackets.

$A="A<0A>"

This string will print as "A" followed by a line feed
(character code 0A).

6-1

Each character stored takes one byte of memory. A simple
undimensioned variable can store up to 5 characters. The
variable is six bytes long and the last byte is used to store
a null terminator. Care should be taken not to exceed this as
other variables will become corrupted.

6.3 Longer Strings

Very often it is necessary to store strings longer than five
characters. This is done using array variables. Each array
element can store six characters, except the last which holds
five and the terminator. Thus the maximum length of a string
is (6*number of elements)-1. Note that elements start at
zero, so an array dimensioned to 9 has 10 elements. The
normal DIMension statement is used:

DIM $A(20)

This array will hold up to 125 characters (i.e.: 6*21 -1).
Since A(x) and $A(x) refer to the same variable the $ sign in
the DIM statement is optional and is in fact ignored by
BASIC. It is advisable to include it for variables to be used
for strings for your own reference.

To use the array as a character string, refer to element
zero. For example:

$A(0)="Hello this is a character string"

PRINT $A(0)

Hello this is a character string

Note that although A and $A are the same variable, $A and
$A(0) are distinct. $A can only hold 5 characters. $A(0) as
dimensioned above can hold up to 125. Although allowed, it is
best not to use an undimensioned variable and array of the
same name in a program as this can cause confusion to the
programmer.

6-2

6.4 Arrays of Strings

To generate an array of strings simply DIMension the variable
to one more dimension than required. The extra dimension
gives the length of the strings. For example:

DIM $B(10,10,5)

generates a 10 by 10 array of strings, each holding up to 35
characters.

The last element defines the length of the strings. The
elements of the string array are then referred to as:

$B(X,Y,0)="String at array position X,Y"

6.5 String Comparisons

For the rest of this section the following conventions will
be used:

<$var> means either a literal string in quotes or
 a variable name preceded by a $ sign.

$<var> means only a $ sign preceding a variable.

Comparisons of the following form are valid:

IF <$var> <relation> <$var> THEN <BASIC statement>

Examples:

100 IF $IP = "Y" THEN GOTO 500
110 IF $N(I,0) > $N(J,0) THEN GOSUB 600

Any of the relations, = <> > < <= >= may be used.

Comparisons are made according to the ASCII codes of the
strings. Thus "B" is greater than "A", "FFGA" is greater
than "FFG" and so on.

6-3

6.6 Reading Strings

Strings may be read from a DATA statement using a READ
statement provided that the string data is read into a string
variable.

Examples:

10 DIM $N(5),$Z(5)
20 READ $N(0),A,B,$Z(0)
30 DATA "STRING DATA" , 12345 , A*10 , $N(0)

In this example, $N(0) receives the string "STRING DATA", the
variable A receives the number 12345 and B the number 123450.
The string variable $Z(0) receives the same string as $N(0).

6.7 Indexing into Strings

A dimensioned string variable can have an offset into the
string. This is achieved by following the last subscript with
a semicolon and the character displacement. The range of the
index is from one to the length of the string. $A(0;1) is the
same as ŞA(0).

Examples:

10 DIM $A(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 PRINT $A(0)
40 PRINT $A(0;1)
50 PRINT $A(0;10)
60 STOP

RUN

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
JKLMNOPQRSTUVWXYZ

Stop at 60

10 DIM $A(10),$B(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $B(0)=$A(0;10)
40 $A(0;2)=$B(0;2)
50 PRINT $A(0),$B(0)
60 STOP

RUN

AKLMNOPQRSTUVWXYZ JKLMOPQRSTUVWXYZ

6-4

6.8 String Concatenation

Strings are concatenated using the "+" operator.

Form:

$<var> = <$var> + <$var> + ...

A number of concatenations may be chained together.

Example:

10 DIM $A(10),$B(10)
20 $A(0)="ABCDE"
30 $B(0)=$A(0)+"FG"+"HIJK"
40 PRINT $B(0)
50 STOP

RUN

ABCDEFGHIJK

STOP AT 50

6-5

6.9 Character Pick

Characters can be picked from one variable into another by
using the semicolon as an offset and a comma to indicate the
number of characters.

Form:

$<var> = <$var) , <expression>

The expression gives the number of characters to be used. The
characters specified are transferred to the new variable. If
an offset is specified in the variable to receive the
characters, they are copied in starting at that offset. The
new string terminates at the end of the picked characters.

Example:

10 DIM $A(10),$B(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $B(0)=$A(0;4),6
40 $B(0;5)=$A(0),1
50 PRINT $B(0)
60 STOP

RUN

DEFGA

Stop at 60

If the number of characters to be picked goes beyond the end
of the source string, then characters up to the end of the
string are picked. If the expression is negative, no
characters are picked.

6-6

6.10 Character Replacement

Character replacement is very similar to character pick. In
this case the new string retains its original length. It does
not terminate at the end of characters picked.

Form:

$<var> = <$var> ; <expression>

The expression gives the number of characters to be replaced.
The characters specified are transferred to the new variable.
If an offset is specified in the variable to receive the
characters, they are copied in starting at that offset. The
new string retains its original length or is extended if the
new characters make it longer.

Example:

10 DIM $A(10),$B(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $B(0)=$A(0;4),6
40 $B(0;5)=$A(0);1
50 PRINT $B(0)
60 STOP

RUN

DEFGAI

Stop at 60

If the number of characters to be replaced goes beyond the
end of the source string, then characters up to the end of
the string are taken. The new string will end at the end of
the characters replaced. If the expression is negative, no
characters are picked.

6-7

6.11 Individual Character Replacement

Individual characters may be replaced by using the ASCII
character code of the new character preceded by the "%"
operator.

Form:

$<var> = %<expression> ...

Example:

10 DIM $A(10),$B(10)
20 $A(0)="***********"
30 $A(0;3)=%65%66
40 $B(0)=%65%66%0
50 PRINT $A(0),$B(0)
60 STOP

RUN

AB***** AB

Stop at 60

If the replacement goes beyond the end of the existing
string, you must put the null terminator in yourself as in
line 40 above. With the "%" operator this 1s NOT automatic.
For this reason, care is needed to use the character
replacement operator.

6-8

6.12 Character Insertion

Characters can be inserted into a string variable using the
"/" operator.

Form:

$<var> = / <$var>

The characters will be inserted at the beginning of the
string. If an offset is specified, the characters will be
inserted before the specified character.

Example:

10 DIM $A(10),$B(10)
20 $A(0)="ABCDEFG"
30 $A(0;4)=/ "...."
40 PRINT $A(0)
50 STOP

RUN

ABC....DEFG

Stop at 50

If the offset is greater than the length of the variable, no
insertion takes place.

6-9

6.13 Character Deletion

Characters are deleted from a string variable by using the
"/" operator followed by an expression.

Form:

$<var> = /<expression>

The expression is evaluated and that number of characters are
deleted from the beginning of the string. If an offset is
specified, then characters are deleted starting with the
specified character.

Example:

10 DIM $A(10),$B(10)
20 $A(0)="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 $A(0;5)=/10
40 PRINT $A(0)
50 STOP

RUN

ABCDOPQRSTUVWXYZ

Stop at 50

6-10

6.14 Convert String to Number

A character string may contain characters that make up a
valid number. This number may be given to a numeric variable
by assigning the string to the numeric variable.

Form:

<var> = <$var>,<var>

The first character in the string that is not a valid numeric
digit is placed in the second variable. If this is a null
then all characters have been successfully converted. This
error variable may be used as a numeric variable, as it is
specified in the conversion, and checked for "0" value.
Alternatively, a "$" is placed in front and it is used as a
string variable. It may then be printed or tested for the
invalid character.

Example:

10 N="1234",E
20 N1="12DE",E1
30 PRINT N,$E
40 PRINT N1,$E1
50 STOP

RUN

1234
12 D

Stop at 50

6-11

6.15 Convert Number to String

A number can be converted to a string by assigning the number
to a string variable. The string will contain the characters
that would be printed by printing the number.

Form:

$<var> = <expression>

Example:

10 DIM $A(10),$B(10)
20 N=1
30 $A(0)=4*ATN(N)
40 $B(0)=SQR(2)
50 PRINT $A(0),$B(0)
60 STOP

RUN

3.141592 1.414213

Stop at 50

Formatted conversions may be made by preceding the expression
with "#" and a string. The formatting rules are the same as
those used for the PRINT statement (section 4.2.7).

Example:

10 DIM $A(10),$B(10)
20 $A(0)=#"999,990.99",5465
30 $B(0)=#"<<<,<<<.00>",-5465
40 PRINT $A(0),$B(0)
50 STOP

RUN

 5,465.00 <5,465.00>

Stop at 50

6-12

6.16 Character Functions

In addition to all the operations explained in this section,
there are a number of standard string functions. These are
explained in detail in section 4.3.2, String Functions.

The functions available are:

ASC(<$var>) - Convert string to ASCII code
LEN(<$var>) - String length function
MCH(<$var>,<$var>) - Match between two strings
POS(<$var>,<$var>) - Position of 1 string within another

Each function returns a numeric value.

6-13

This page is intentionally blank

7. MONITOR

7.1 Introduction

In addition to BASIC, the CORTEX is supplied with an assembly
language and machine code monitor. This may be used to write
programs in TMS9995 assembly language. These may either be
executed in their own right or CALLed from BASIC.

The CORTEX monitor is a powerful tool to simplify the debug
of assembly language programs. To achieve this, there are
several modes of single stepping, a 'Trace' facility, an
assembler, a disassembler and multiple breakpoints.

All commands are single letter commands, followed by up to
three Hex parameters.

The monitor is entered by typing the MON command in BASIC.
The message:

* Monitor Rev. x.x (C) 1982

is output. The number x.x gives the version of the monitor.
The prompt [] is displayed. Return to BASIC is by typing "C".
The monitor is now ready to accept commands.

NOTE: In this section, assembly language is used to mean the
source mnemonics for TMS9995 code. Machine code is the actual
code generated for execution by the 9995, here represented by
hexadecimal numbers.

7-1

7.2 Monitor Commands

7.2.1 List of Commands

The commands available in the monitor are as follows:

? WHERE AM I
A LINE BY LINE ASSEMBLER
B BREAKPOINT SETTING
C CRU INSPECT CHANGE
D DUMP TO TAPE
E EXECUTE
F FIND WORD OR BYTE
G GOTO BASIC (WARM START)
I INITIALIZE MEMORY
L LOAD FROM TAPE
M MEMORY INSPECT CHANGE
N NEGATIVE FIND (FIND ANYTHING BUT PATTERN)
P OUTPUT PORT ENABLE/DISABLE
R INSPECT/CHANGE WP, PC, AND ST REGISTERS
S SINGLE/MULTIPLE STEPPING
T TRACE-SINGLE STEP WITH PRINTOUT
U UN-ASSEMBLER
W WORKSPACE REGISTER INSPECT/CHANGE
X TRANSFER (XFER) MEMORY

7-2

7.2.2 Notes On Command Format

The following notes are given mainly for those users who have
not used a debug monitor previously. The formats given for
command input under each command description, whilst
sufficient for those who are familiar with monitors, do not
give the full formats required.

1. Items enclosed by '<>' are user supplied, items
enclosed by '[]' are monitor supplied.

2. Valid terminators etc., are:

a. Carriage Return

b. Space

c. Comma

d. Minus sign

A Carriage Return is used as a command parameter input

terminator.
A Space is used as a parameter delimiter and a "stepper".
A Comma is used as a parameter delimiter only.
A Minus sign is used as a "negative stepper".

All numbers are hexadecimal and are entered
as up to 4 hexadecimal digits. Do NOT type H
after the number.

Any deviations from these are given in the relevant commands.

DELIMITERS ARE REQUIRED BETWEEN USER INPUT PARAMETERS

7-3

7.2.3 Memory Data Checking

NO checking is carried out in the "M" and "L" commands to
ensure that the data which appears in memory is that which
was written. The two main reasons for this are:

1. Problems occur with memory mapped ports of various
types (particularly those which auto-increment on a
read or write) if a write to memory is always
followed by a read.

2. When a system is configured such that RAM is

overlaid with EPROM (quite common with 64K DRAM
systems) the RAM can be written to but if a check is
carried out by reading the data back the EPROM will
be read which will (usually) give a write error.

NOTE

All commands may be aborted while in the user
input mode by pressing ESCAPE.

7-4

7.3 Monitor Command Descriptions

7.3.1 ? = Where Am I?

The current values of WP,PC and ST are printed together with
the instruction about to be executed at the current PC.

7.3.2 A = Line By Line (Zero Label) Assembler

The A command is followed by the assembly address. 9900
series assembly language mnemonics are entered line by line
until the escape key is pressed.

NOTE

The format of TMS9995 instructions
follows the standard 9900 series
assembler syntax This means that hex
numbers must be preceded by the >
character.

* Starting Format:

 - A <ADDRESS><TERMINATOR>

* Continuing Format:

 - [ADDRESS][spaces]<OPCODE><space><OPERANDS><RETURN>

* Response:

 - [ADDRESS][OBJECT]

 - [ADDRESS][spaces]<OPCODE><space><OPERANDS><RETURN>

7-5

* Assembler default settings.

 - Address = start of user RAM area (Can be changed at
 assembly time)

* To return to the command scanner, use ESCAPE.

NOTE

The user RAM area is that area between
the BASIC interpreter and the bottom of
the BASIC programs. The top of this area
is defined by the NEW command. This area
allows assembly language routines to
reside co-resident with BASIC programs
without being corrupted by BASIC.
Alternatively, assembly language routines
may be placed within array variables.

The opcode must be separated from its operand by a space
character. Comments may be added if required BUT they must be
separated from the operand by at least one space character
(comments have no effect on the object i.e., they are not
stored).

Error checking is done wherever possible, but in some cases
errors are not detected by the assembler (e.g., DATA +2 will
always result in >0000 being output). Because of this it is
good practice to always disassemble the object code produced
(using the 'U' command) in order to ensure that the assembled
code is correct. Errors are indicated by one of the
following:

*S = Syntax error
*D = Data (number) error
*R = Register error

This assembler is capable of assembling all the 9900/9995
opcodes (including the pseudo opcodes RT, NOP and SPIN) and
the DATA directive. The predefined macro instructions can be
assembled using the formats given in section 8.

7.3.2.1 Expressions

Only '+' and '-' are allowed as mathematical expressions.

7-6

7.3.2.2 Constants

All constants are assumed to be decimal unless prefixed by a
character to indicate otherwise:

Decimal 1234
Hex >1234
Binary %110111100
ASCII 'AB' (=>4142)

Note that 'A' gives >0041 and not >4100

7.3.2.3 Program Counter Relative

Program counter relative assembly (for Jumps) has the normal
format e.g., JMP $-2 will result in >10FE as the object
output.

7.3.2.4 Text (and Unprintable Characters)

Text is preceded by a '$' and can be entered as follows:

$THIS IS AN EXAMPLE OF TEXT

and will result in the appropriate hex code being entered
into memory. If the last character is on an 'odd' boundary
then a SPACE character will be added to force the address to
an even value. Unprintable characters may be entered in this
mode with the exception of carriage return. However remember
that the character is echoed to the terminal, and therefore
cursor controls will affect the cursor position.

7.3.2.5 Assembly Address Change

To change the assembly address simply enter a '/' followed by
the address required and a terminator.

7.3.2.6 Peculiarities

The assembler will accept a number preceded by a minus sign.
If negative numbers are required, they should be entered as
Hex words, i.e., -l = >FFFF

7-7

7.3.3 B = Breakpoint Inspect/Change

The user is allowed up to 16 breakpoints. Instructions at
designated breakpoints are replaced by a BKPT macro
instruction during the Execute command and replaced on
reentry to the monitor's command scanner (e.g., RESET is
pressed to regain control, a breakpoint is reached etc.)

* Format:

- B <CARRIAGE RETURN> Entering just B will
display the current settings of the 16
breakpoints.

- B <BREAKPOINT NUMBER><TERMINATOR> Entering
the breakpoint number after B will display
the current address of that breakpoint and
wait for the new address to be entered.

- B <-> The B- command clears all breakpoints.

All of the 16 breakpoints whose value is not zero will be set
in the Execute command (if required). Breakpoints are
invisible to the user under normal circumstances (that is,
the user should never see the breakpoint instruction in the
program). The situation can however occur whereby the user
program causes the processor to corrupt the Monitor flags. If
this occurs, the breakpoints should be cleared and the
breakpoints removed from RAM by use of the 'M' command and
replaced with the appropriate instructions. Breakpoints are
not removed from the breakpoint list when 'hit' during
execution. If execution of the user program commences from a
point at which a breakpoint is to be set then the instruction
at that point is executed before the breakpoint is inserted
into the program.

NOTE

Breakpoints will be removed from the
program even if no Breakpoint has been
reached. This can happen when the user
program returns to the Monitor command
scanner or 'Reset' is pressed to regain
control.

When a breakpoint is reached, the breakpoint number is
output, followed by the processor status as described in
'Trace'. Control is then returned to the command scanner.

7-8

7.3.3.1 Breakpoint Zero

This breakpoint has, in addition to its normal use, a special
facility associated with it in the form of a user subroutine
capability. When breakpoint zero is reached, the breakpoint
zero vector is checked to see whether or not it is zero. If
it is not zero, then the data there is used as the address to
branch to for the user subroutine. The address of this vector
is found via the SYS(19) function in BASIC. The user
subroutine is accessed via a 'branch and link'. If the user
subroutine decides that the conditions required have not been
met then the breakpoint can be ignored (on this occasion) by
returning to the monitor by means of an 'RT' instruction.

If the flag is set to zero, then breakpoint zero works in the
same manner as the remaining breakpoints.

7.3.4 C = CRU Inspect/change

Input the CRU base address followed by the bit count. All
input and output to the CRU is right justified in the 16 bit
input/output data fields.

Input of a Carriage Return as a termination character returns
control to the command scanner. A space as termination
character causes the CRU input bits to be set, and the
(changed) CRU output bits to be re-output to the terminal.

* Format:

- C <BASE ADDRESS)<No. OF BITS><TERMINATOR>

- C <BASE ADDRESS><TERMINATOR>

* Defaults:

- Base = 0

- No. of bits = 16

7-9

7.3.5 D = Memory Dump to Cassette

Dump memory image to the audio cassette interface. The data
is output in absolute code. This means that it can only be
reloaded to the location from which it came when loaded by
the 'L' command.

The dump procedure is very similar to that used for SAVE in
BASIC. The D command produces a prompt for IDT. This
corresponds to the name in BASIC. The Auto Run and cassette
ready prompts follow.

* Format:

- D <START ADR><STOP ADR><ENTRY ADR><TERMINATOR>

- D <START ADR><STOP ADR><TERMINATOR>

* Followed by:

- [IDT=]<up to 8 chars>

- [Auto Run? (Y/N)] <Y or N>

- [Cassette ready? (Y/N)) <Y or N>

* Defaults:

- All address defaults are 0

- IDT = 8 spaces

- READY = N(o)

7-10

Memory is dumped in the following format:

 TAPE SAVE FORMAT

|-----------------|
| SYNC CHAR (16H) | Repeated for 2 second startup
|-----------------|
| STX CHAR (02H) | Start of data
|-----------------|
| HEADER BLOCK | See below
|-----------------|
MEMORY IMAGE
ETX CHAR (03H)

CHECKSUM

 HEADER BLOCK

|-----------------| RUN =>A5A5
| AUTO RUN FLAG | NORUN=>5A5A
|-----------------|
| 8 BYTE NAME | NULL FILLED
|-----------------|
>0000
LOAD ADDRESS

ENTRY POINT

LOAD LENGTH

CHECKSUM

7-11

7.3.6 E = Execute

Ask the user if the defined breakpoints are to be set, then
output the present WP,PC & ST and allow the user to alter the
PC if required. On input of a terminator, execute the user
program.

* Format:

- E [Set BPs?] <Y or N> [Execute WP=XXXX PC=XXXX
 ST=XXXX]<PC><TERMINATOR>

- E [Set BPS?] <Y or N> [Execute WP=XXXX PC=XXXX
 ST=XXXX]<TERMINATOR>

* Defaults:

- WP,PC,ST = as given

NOTE

If the WP or ST need to be changed, the
'R' command should be used. To allow the
system clock to continue running and to
enable break in to the program with the
escape key, interrupts must not be
disabled. To achieve this, load the
status register with 0F before executing.

7.3.7 F = Find Word or Byte

Look from the Start address to the Stop address for the
specified data pattern. If the pattern is found, then output
the address. The termination character determines the search
mode:

 Carriage Return = WORD SEARCH
 Minus sign = BYTE SEARCH

* Format:

 - F <START ADR.><STOP ADR.><PATTERN><TERMINATOR>

* Defaults: All zero

See also 'N' command (Negative find)

7-12

7.3.8 G = Goto BASIC

The G command returns to BASIC by doing a warm start into the
interpreter. BASIC programs previously entered will still be
intact provided they have not been overwritten by commands or
programs executed from the monitor.

7.3.9 I = Initialize (Pattern) Memory

Initialize memory from Start address to Stop address with a
given pattern.

* Format:

 - I <START ADR><STOP ADR><PATTERN><TERMINATOR>

* Defaults: All zero

7.3.10 L = Load Memory From Cassette

Accept the IDT from the user. Turn on cassette motor and load
the data. Upon a good load, control is passed to the calling
routine (normally the monitor command scanner). A checksum
error produces the message:

** Tape read error **

The (possibly corrupted) data will still have been loaded.

* Format:

 - L <TERMINATOR>

* Followed by:

 - [IDT=]<up to 8 chars>

 - [Cassette ready? (Y/N)] <Y or N>

7-13

7.3.11 M = Inspect/Change Memory

There are two options for this command:

1. Output the memory location followed by its contents and
allow the contents to be changed.

* Format:

 - M <ADDRESS><CARRIAGE RETURN>

* Response:

 - [ADDRESS=CONTENTS]<NEW DATA><TERMINATOR>

 - [ADDRRSS=CONTENTS]<TERMINATOR>

* The terminator determines what is to be done next:

 - CARRIAGE RETURN = Return to the command scanner

 - SPACE = display next address for change

 - MINUS = display previous address for change

NOTE

If new data is entered, then this will be
placed in memory regardless of the
terminator. Leading zeros are not required
for the entry of data. If a mistake is made
during entry then simply enter the correct
four hex digits (the monitor takes only the
last four hex digits entered).

2. Dump the memory contents to the terminal from the start
address to the stop address.

* Format:

 - M <START ADR><STOP ADR><CARRIAGE RETURN>

* Defaults: Zero

7-14

7.3.12 N = Negative 'Find'

Search memory from the Start address to the Stop address for
patterns other than the specified data pattern.

If a data pattern other than the one specified is found then
the address of that pattern is output. The termination
character determines the search mode.

Carriage Return = WORD SEARCH
Minus sign = BYTE SEARCH

* Format:

 - N <START ADR><STOP ADR><PATTERN><TERMINATOR>

* Defaults: zero

7.3.13 P = Port Toggle

Load the unit flags with the parameter.

* Format: P <NEW UNIT FLAG><TERMINATOR>

This command allows devices to be enabled and disabled from
the monitor. The unit flags area is a 16 bit word, each bit
set indicates a device enabled. See the UNIT statement and
SYS(5) functions in section 4 for further information about
devices and device numbers.

7-15

7.3.14 R = Inspect/Change WP, FC, ST Registers

Allow the user to inspect/change the Workspace Pointer,
Program Counter and Status Registers.

* Format:

 - R <CARRIAGE RETURN>

* RESPONSE:

 - [REG = CONTENTS]<NEW VALUE><TERMINATOR>

* Terminators:

 - SPACE = To next register

 - MINUS = To previous register

 - RETURN = To command scanner

* Defaults: NONE

7-16

7.3.15 S = Single Step

This command has three different modes of operation:

1. Execute the specified number of single steps.

* Format:

 - S <VALUE LESS THAN HEX 80> <TERMINATOR>

The processor will execute the required number of single
steps and then return to the command scanner via a print
routine (see below).

2. Single step until the program counter reaches the given
address.

* Format:

 - S <VALUE GREATER THAN HEX 80><TERMINATOR>

The processor will execute the routine (as indicated by the
'R' command) until the Program Counter reaches the required
address. At this point, control is passed back to the command
scanner via a print routine (see below). This mode of single
step effectively gives a 'Breakpoint in EPROM' facility.

3. Single step until the contents of location "ADDRESS"
equals VALUE.

* Format:

 - S <ADDRESS> <VALUE>

The processor will single step as stated above. Upon the
address containing the required value, control is passed back
to the command scanner via a print routine which gives the
following information:

[SS: WP=XXXX PC=XXXX ST=XXXX DATA @ PC DISASSEMBLY OF PC DATA]

NOTE

In modes one and two of single step the
data given is for the instruction ABOUT
to be executed and not the last
instruction executed. In mode three the
previous instruction is the one which
caused ADDRESS to contain VALUE.

7-17

* Defaults:

 - Steps = 1

 - Addresses = 0

NOTE

Real time execution cannot be obtained in
single step mode, (execution will take at
least 10 times longer than real time).
See also the notes in section 7.3.19
about stepping through MIDs.

7.3.16 T = Trace

Trace the path of the processor through the required routine,
returning to the print routine (as in Single step above)
after each instruction.

* Format:

 - T <NUMBER OF STEPS> <TERMINATOR>

* Default: 1 step

7.3.16.1 Tracing and Single Stepping through MIDs

Due to the print routines called by 'Trace' and 'Single Step'
using the pre-defined MIDs, a problem would arise if an
attempt was made to trace or step into these, as the data in
R13, R14 & R15 would be overwritten by these calling
routines. In order to avoid this problem, the Trace and
Single Step print routine is not allowed to be called during
these MIDs, and the single step will continue until the MID
is complete. The effect of this to the user is that a MID
will appear to be only one instruction. e.g., if the next
instruction to be executed is the MSG MID and one single step
is done, then the whole message will be output before control
returns to the command scanner.

7-18

7.3.17 U = Un-Assembler/Disassembler

There are two modes of this command:

1. Disassemble a line at a time from the given address:

* Format:

 - U <ADDRESS> <TERMINATOR>

* response:

 - [DISASSEMBLY] <TERMINATOR> etc., for each line

Press ESCAPE to return to the command scanner.

* Default: Start of user RAM

2. Disassemble block from Start address to Stop address:

* Format:

 - U <START ADDRESS><STOP ADDRESS><TERMINATOR>

* Defaults: zero

The disassembler is also called by the 'Breakpoint', 'Single
Step' and 'Trace' routines.

7-19

7.3.18 W = Inspect/Change User Workspace Register

The W command has two modes of operation:

1. Display the contents of all the current user workspace
registers and return to the command scanner.

* Format:

 - W <CARRIAGE RETURN>

2. Input the register number in Hex, and display the contents
of the register for change. The output is handled in a
similar way to memory (M) inspect/change mode.

* Format:

 - W <REGISTER NUMBER><TERMINATOR>

* Default:

 - Not applicable (Mode 2 defaults to mode 1)

7.3.19 X = Transfer (Xfer) Data From One Block of Memory to Another

Copy the data in block from (Start address to Stop address)
to the new address.

* Format:

 - R <START ADR><STOP ADR><NEW START ADR><TERM>

* Defaults: zero

NOTE

Data transfers are carried out in 'Byte'
mode and are always done in such a way as
not to overwrite data which has yet to be
moved. This command is useful for such
things as moving data up down by a word in
order to insert/delete an instruction and
also for transferring data from EPROM to
RAM. NOTE also that the two start addresses
are allowed to be equal thus permitting
transfer of data to RAM which is overlaid
with EPROM.

7-20

7.4 Programming Notes

7.4.1 Choice of Memory Locations

For a program to be CALLed from a BASIC program, no parts of
BASIC or its data storage should be overwritten. The NEW
command from BASIC may be used to reserve memory for the
machine code routine. Alternatively, space may be reserved in
a array using the DIM statement. The address allocated to the
array may be found using the ADR function.

If a program is to stand alone as machine code, it may
overwrite parts of the CORTEX software. If it is desired to
retain the monitor for debugging and to make use of existing
device drivers and macro instructions, the program should be
loaded above 2000 Hex. It should also be noted that the
monitor cannot be used to single step or trace through code
below 6000 hex. Memory above EC00 Hex should not be used as
this is where system flags and workspaces are stored.

This means that for a program of this sort, 51K bytes between
2000 and EC00 Hex are available.

A program that provides its own interrupt service routines,
device drivers, macroinstructions, debugging etc., may
overwrite everything and take over the Cortex completely. An
example of this would be UCSD Pascal booted from disc. 60K
bytes of memory is available from zero to F000 Hex with
TMS9995 internal RAM from F000 to F0FB and FFFC to FFFF Hex.
The remaining 3.75K bytes of the map is used for memory
mapped I/O. Full memory and I/O maps are given in Appendix E.

For all these types of program, further memory may be made
available by using the memory mapper chip to access extra
memory through the E-bus.

7-21

7.4.2 Ending Machine Code Programs

A program CALLed from BASIC should return using the RTWP
instruction. Ensure that the program does not corrupt its
return context.

A stand alone program may return to the monitor by using the
instruction:

B @>80

This returns to the [] prompt.

A return to BASIC may be made by branching to the location
returned by the SYS(12) function in BASIC.

7.4.3 Interrupt Mask

To enable all existing device drivers and keep the clock
going while a machine code routine is executing, interrupts
should not be disabled. To ensure this, the status register
should be loaded with a value of 0F Hex or greater before
execution. This also allows the program to be halted using
the escape key.

7-22

8. MACRO INSTRUCTIONS

The CORTEX software contains a number of predefined
instructions for I/O operations. These are serviced by the
TMS9995 Macro Instruction Detect (MID) mechanism and are
known as MIDs. Input and output takes place from and to all
devices currently enabled in the unit flag. This is set up
by the 'P' command or the UNIT statement in BASIC.

8.1 Pre-defined MIDs

The MIDs that are defined on the CORTEX for I/O operations
are as follows:

BKPT - Breakpoint instruction (use ONLY via the 'B' command)
MSG - Output a message
READ - Read a character
WRIT - Write a character
EKO - Read a character and echo it
WHXW - Write Hex word
RHXW - Read Hex word
WNBL - Write Hex nibble

These opcodes are accepted by the line by line assembler and
recognized by the disassembler.

8.2 MID Calling Sequences

8.2.1 Breakpoint: BKPT

- Call = BKPT Breakpoint number

- Return = Monitor Command Scanner

- MID opcode = 0FC0

CAUTION

THIS MID SHOULD NOT BE CALLED EXCEPT BY
USING THE 'B' COMMAND.

8-1

8.2.2 Message Output: MSG

- Call = MSG (source address)

- Return = next instruction

- MID opcode = 0F80

The message pointed to by the source address is output until
a zero byte is encountered. Return is to the caller.

Example:

MSG @>6200

Where the message is stored from >6200 upwards.

The output is byte by byte and uses the WRIT MID.

8.2.3 Read ASCII Character: READ

- Call = READ (destination address)

- Return = next instruction

- MID opcode = 0F40

The CORTEX waits for a character to be received from the
keyboard. The destination address is cleared and the input
character is placed in the LEFT HAND byte (MSB) of this word.
The destination address should be on a word boundary, which
means it must be an even number.

Example:

READ R5

Where the input character will be stored in R5.

8-2

8.2.4 Write ASCII Character: WRIT

- Call = WRIT (source address)

- Return = next instruction

- MID opcode = 0F00

The character pointed to by the source address is output.

Example:

WRIT R5

The character in the MSB of R5 will be output.

As can be seen from the flow diagram, each time a carriage
return is output, a check is made to see if a character has
been received. If one has and it is a Space, then output is
halted. Action then is determined by the character:

Escape: will terminate output and return to BASIC or the

Monitor.

Space: Wait for another character to be input, but do not

acknowledge it. If character is other than a space,
then next time a carriage return is output it will be
acknowledged and ignored. If the character is a space
then output will again be halted.

The above gives the user the capability of single
stepping lines being output by means of the space bar,
aborting by means of Escape, or going back to normal
mode by pressing any other key.

8-3

The following flow diagram illustrates execution of the WRIT
instruction:

+-----------+
| Send Char.|
+-----------+
 |
+-----------+
| Was Char. | No
| a RETURN? |----------►Exit
+-----------+
 |Yes
+-----------+
| Has a key | No
| been |----------►Exit
| pressed? |
+-----------+
 |Yes
+-----------+
| Was |

 Yes | ESCAPE |
 +--◄--| pressed |
 | +-----------+
 | |No
 | +-----------+
 | |Acknowledge|
 | | Character |
 | +-----------+
 | |
 | +-----------+
 | | Was | No
 ▼ | Spacebar |----------►Exit
 | | pressed? |
 | +-----------+
 | |Yes
 | +-----------+
 | | Wait for |
 | | input |
 ▼ +-----------+
 | |
 | +-----------+
 | | Escape | No
 | | input? |----------►Exit
 | +-----------+
 +---►-------|Yes
 +-----------+

 |Acknowledge|
 | Character |
 +-----------+
 |
 Exit to MONITOR

8-4

8.2.5 Echo ASCII Character: EKO

- Call = EKO (destination address)
- Return = next instruction
- MID opcode = 0EC0

This MID calls the READ and WRITE MIDs. The destination
address must be on a word boundary (normally a register).

Example:

EKO R6

This inputs a character into R6 and echoes it to the
screen.

8.2.6 Write Hex Word: WHXW

- Call = WHXW (source address)
- Return = next instruction
- MID opcode = 0E80

The hex word at the source address is converted to four ASCII
characters. The WRIT MID is used to output them to the
screen. The source data is not affected.

Example:

WHXW *R5

This prints in Hex the contents of the word pointed to by R5.

8-5

8.2.7 Read Hex Word: RHXW

- Call = RHXW (destination address)
- Null return address = DATA
- Error return address = DATA
- Normal return = next instruction
- MID opcode = 0E40

Characters are input until a non Hex character or a
termination character is found. (Termination characters are:
space, comma, minus or carriage return.) The termination
character is returned in the left hand byte of the word
following the destination address, with the right hand byte
set to zero.

Having input Hex characters and received a valid terminator,
the Hex number is returned right justified in the destination
address. Return is to the address following the Error Data
statement.

If ONLY a termination character is found, then return is to
the Null return address pointed to by the DATA statement
following the call. The destination address remains
unchanged. (This allows default values to be set up in the
destination address before calling this MID).

If a non Hex character which is not a terminator is input,
then the return is to the Error return pointed to by the DATA
statement following the Null return pointer. The destination
address and the word following it will remain unchanged.

Example:

RHXW R4
DATA >7000
DATA >7010

This will read a Hex word into R4 and the terminator into the
MSB of R5. Normal return is to the instruction following the
second data statement. If no characters are input before the
terminator, return is to >7000. If invalid characters are
input, return is to >7010.

8-6

8.2.8 Write Hex Nibble: WNBL

- Call = WNBL (source address)
- Return = next instruction
- MID opcode = 0E00

The right most Hex digit in the source address is converted
to ASCII and output to the terminal using the WRIT MID. The
source data is unaffected.

WNBL @>8000

This will output the ASCII character corresponding to the
least significant Hex digit in the word at >8000.

Any other MID opcodes will produce a message:

** Illegal opcode **

and return into BASIC.

8-7

This page is intentionally blank

APPENDIX A

Alphabetical list of BASIC keywords

COMMANDS :- Page:

BOOT BOOTS PROGRAM FROM FLOPPY DISC 4-15
CONT RESUMES EXECUTION AFTER HALTING 4-10
ERROR ENABLES/DISABLES ERROR LINE EDITING 4-17
LIST LİSTS ALL OR PART OF THE PROGRAM 4-9
LOAD LOADS A NAMED PROGRAM FROM CASSETTE 4-6
MON EXECUTES THE DEBUG MONITOR 4-14
NEW START A NEW PROGRAM 4-4
NUMBER AUTOMATIC LINE NUMBERING 4-11
PURGE DELETES SECTIONS OF THE PROGRAM 4-14
RENUM RENUMBERS THE PROGRAM 4-12
RUN EXECUTES THE CURRENT BASIC PROGRAM 4-10
SAVE SAVES THE PROGRAM ON CASSETTE 4-7
SIZE PRINTS THE AMOUNT OF AVAILABLE MEMORY 4-5

DELIMITERS :-

TO TAB STEP THEN : , ; ? " ' [] ()

X-1

FUNCTIONS :- Page:

ABS ABSOLUTE VALUE 4-92
ADR ADDRESS OF A VARIABLE 4-103
ASC ASCII CODE FOR A CHARACTER 4-98
ATN ARCTANGENT 4-92
BIT VALUE OF A BIT IN A VARIABLE 4-104
COL COLOR OF A PIXEL 4-116
COS COSINE 4-93
CRB VALUE OF A CRU BIT 4-100
CRF VALUE OF A NUMBER OF CRU BITS 4-101
EXP E RAISED TO THE POWER OF THE ARGUMENT 4-93
FNA-FNZ USER DEFINED FUNCTION 4-22
FRA FRACTIONAL PART 4-94
INT INTEGER PART 4-95
KEY VALUE OF A KEY PRESSED WHILE RUNNING 4-102
LEN LENGTH OF A STRING 4-98
LOG NATURAL LOG 4-96
MCH STRING MATCH 4-99
MEM VALUE OF A MEMORY BYTE 4-105
MOD MODULUS DIVISION 4-96
MWD VALUE OF A MEMORY WORD 4-105
POS POSITION OF ONE STRING IN ANOTHER 4-99
RND RANDOM NUMBER BETWEEN 0 AND 1 4-117
SGN SIGN OF THE ARGUMENT 4-97
SIN SINE 4-93
SQR SQUARE ROOT 4-97
SYS SYSTEM VARIABLES (SEE LIST BELOW) 4-106
TIC ELAPSED TIME 4-118

SYSTEM FUNCTIONS :-

HELP FLAG SYS(0) 4-107
LAST ERROR NUMBER SYS(1) 4-107
LAST ERROR LINE No. SYS(2) 4-108
CRU BASE ADDRESS SYS(3) 4-108
ERROR FLAG SYS(4) 4-109
UNIT FLAG SYS(5) 4-109
ESCAPE DISABLE FLAG SYS(6) 4-110
START OF USER RAM SYS(7) 4-110
LINE EDIT ERROR FLAG SYS(8) 4-110
VDP MODE SYS(9) 4-111
FDC INTERRUPT FLAG SYS(10) 4-111
VDP STATUS FLAG SYS(11) 4-112
BASIC ENTRY POINT SYS(12) 4-112
INTERRUPT 1 VECTOR SYS(13) 4-113
INTERRUFT 4 VECTOR SYS(14) 4-113
MID 0 VECTOR SYS(15) 4-113
A/O VECTOR SYS(16) 4-114
ILLEGAL OPCODE VECTOR SYS(17) 4-114
PRINT PREPROCESSOR SYS(18) 4-114
BREAKPOINT 0 VECTOR SYS(19) 4-115

X-2

OPERATORS :- Page:

AND RELATIONAL AND 2-17
LAND BITWISE AND 2-16
LNOT BITWISE NOT 2-16
LOR BITWISE OR 2-16
LXOR BITWISE EXCLUSIVE OR 2-16
NOT RELATIONAL NOT 2-17
OR RELATIONAL OR 2-17
== APROX. EQUALS 2-16
= EQUALS 2-16
> GREATER THAN 2-16
>= GREATER THAN OR EQUALS 2-16
< LESS THAN 2-16
<= LESS THAN OR EQUALS 2-16
<> NOT EQUAL 2-16
- SUBTRACTION 2-15
+ ADDITION 2-15
/ DIVISION 2-15
* MULTIPLICATION 2-15
^ EXPONENTIATION 2-15

STATEMENTS :-

; SHORTFORM FOR 'PRINT' 4-52
? SHORTFORM FOR 'PRINT' 4-52
BASE SET CRU BASE 4-67
BAUD SET SERIAL PORT BAUD RATE 4-65
BIT SET/RESET BIT OF A VARIABLE 4-104
CALL CALL A MACHINE CODE ROUTINE 4-73
CHAR RE-DEFINE A CHARACTER PATTERN 4-85
COLOUR SET FOREGROUND/BACKGROUND COLORS 4-77
CRB SET/RESET CRU BIT 4-100
CRF WRITE A VALUE TO CRU FIELD 4-101
DATA PROGRAM DATA FOR 'READ' STATEMENT 4-42
DEF USER FUNCTION DEFINITION 4-22
DIM DIMENSION ARRAY VARIABLES 4-20
ELSE CONTINUES FROM 'IF-THEN' 4-26
END END OF PROGRAM 4-41
ENTER ENTER STRING AS A PROGRAM LINE 4-89
ERROR TRAP ERRORS TO SUBROUTINE 4-40
ESCAPE ENABLE OPERATION OF ESCAPE KEY 4-72
FOR EXECUTE A LOOP 4-34
GOSUB CALL A BASIC SUBROUTINE 4-27
GOTO EXECUTE FROM GIVEN PROGRAM LINE 4-24
GRAPH INITIALIZE DISPLAY FOR GRAPHICS 4-75
IF CONDITIONAL PROGRAM EXECUTION 4-25
INPUT INPUT DATA TO THE PROGRAM 4-46
LET VARIABLE ASSIGNMENT 4-23

X-3

MAG SET SPRITE SIZE AND MAGNIFICATION 4-88
MEM WRITE VALUE TO MEMORY BYTE 4-105
MOTOR CONTROL THE CASSETTE MOTOR 4-66
MWD WRITE VALUE TO A MEMORY WORD 4-105
NEXT INDICATES THE END OF A 'FOR' LOOP 4-34
NOESC DISABLES OPERATION OF ESCAPE KEY 4-72
ON MULTI-WAY CONDITIONAL GOTO 4-33
PLOT PLOT A POINT OR LINE 4-78
POP REMOVE LAST 'GOSUB' RETURN ADDRESS 4-27
PRINT OUTPUT FROM THE PROGRAM 4-52
RANDOM INITIALIZE RANDOM NUMBER SEED 4-71
READ READ DATA FROM A 'DATA' STATEMENT 4-43
REM COMMENT, HAS NO EFFECT ON PROGRAM 4-19
RESTOR RESET POINTER TO A DATA STATEMENT 4-45
RETURN EXIT FROM A BASIC SUBROUTINE 4-27
SGET READ CHARACTER/SHAPE FROM SCREEN 4-84
SHAPE DEFINES SHAPE IN THE SHAPE TABLE 4-82
SPRITE DISPLAY A SPRITE 4-86
SPUT PLACE A CHARACTER/SHAPE ON SCREEN 4-83
STOP STOP THE PROGRAM 4-41
SWAP SCREEN COLOUR SUBSTITUTION 4-77
TEXT INITIALIZE DISPLAY FOR TEXT 4-74
TIME SETS/READS THE REAL TIME CLOCK 4-68
TOF DISABLE STATEMENT TRACE 4-90
TON ENABLE STATEMENT TRACE 4-90
UNIT ENABLE/DISABLE OUTPUT DEVICES 4-64
UNPLOT DELETE A POINT OR LINE FROM SCREEN 4-80
WAIT HALT PROGRAM FOR GIVEN TIME 4-70

X-4

APPENDIX B

List of BASIC keywords by type

PROGRAM GENERATION PAGE

NEW START A NEW PROGRAM 4-4
SIZE PRINTS THE AMOUNT OF AVAILABLE MEMORY 4-5
NUMBER AUTOMATIC LINE NUMBERING 4-11
ERROR ENABLES/DISABLES ERROR LINE EDITING 4-17
RENUM RENUMBERS THE PROGRAM 4-12
LIST LISTS ALL OR PART OF THE PROGRAM 4-9
PURGE DELETES SECTIONS OF THE PROGRAM 4-14
SAVE SAVES THE PROGRAM ON CASSETTE 4-7
LOAD LOADS A NAMED PROGRAM FROM CASSETTE 4-6
RUN EXECUTES THE CURRENT BASIC PROGRAM 4-10
CONT RESUMES EXECUTION AFTER HALTING 4-10
ENTER ENTER STRING AS A PROGRAM LINE 4-89

COMMENTS AND DECLARATIONS

REM COMMENT, HAS NO EFFECT ON PROGRAM 4-19
DEF USER FUNCTION DEFINITION 4-22
DIM DIMENSION ARRAY VARIABLES 4-20

ASSIGNMENT AND PROGRAM CONTROL

LET VARIABLE ASSIGNMENT 4-23
GOTO EXECUTE FROM GIVEN PROGRAM LINE 4-24
IF CONDITIONAL PROGRAM EXECUTION 4-25
ELSE CONTINUES FROM 'IF-THEN' 4-26
GOSUB CALL A BASIC SUBROUTINE 4-27
POP REMOVE LAST 'GOSUB' RETURN ADDRESS 4-27
RETURN EXIT FROM A BASIC SUBROUTINE 4-27
ON MULTI-WAY CONDITIONAL GOTO 4-33
FOR EXECUTE A LOOP 4-34
NEXT INDICATES THE END OF A 'FOR' LOOP 4-34
ERROR TRAP ERRORS TO SUBROUTINE 4-40
ESCAPE ENABLE OPERATION OF ESCAPE KEY 4-72
NOESC DISABLES OPERATION OF ESCAPE KEY 4-72
STOP STOP THE PROGRAM 4-41
END END OF PROGRAM 4-41

X-5

INPUT AND OUTPUT PAGE

READ READ DATA FROM A 'DATA' STATEMENT 4-43
DATA PROGRAM DATA FOR 'READ' STATEMENT 4-42
RESTOR RESET POINTER TO A DATA STATEMENT 4-45
INPUT INPUT DATA TO THE PROGRAM 4-46
KEY VALUE OF A KEY PRESSED WHILE RUNNING 4-102
PRINT OUTPUT FROM THE PROGRAM 4-52
UNIT ENABLE/DISABLE OUTPUT DEVICES 4-64
BAUD SET SERIAL PORT BAUD RATE 4-65
MOTOR CONTROL THE CASSETTE MOTOR 4-66
BASE SET CRU BASE 4-67
CRB SET/RESET CRU BIT 4-100
CRF WRITE A VALUE TO CRU FIELD 4-101
BOOT BOOTS PROGRAM FROM FLOPPY DISC 4-15

TIMING

TIME SETS/READS THE REAL TIME CLOCK 4-68
TIC ELAPSED TIME 4-118
WAIT HALT PROGRAM FOR GIVEN TIME 4-70

RANDOM NUMBERS

RANDOM INITIALIZE RANDOM NUMBER SEED 4-71
RND RANDOM NUMBER BETWEEN 0 AND 1 4-117

MACHINE CODE AND MEMORY

CALL CALL A MACHINE CODE ROUTINE 4-73
MON EXECUTES THE DEBUG MONITOR 4-14
ADR ADDRESS OF A VARIABLE 4-103
BIT VALUE OF A BIT IN A VARIABLE 4-104
MEM VALUE OF A MEMORY BYTE 4-105
MWD VALUE OF A MEMORY WORD 4-105
SYS SYSTEM VARIABLES (SEE LIST APPENDIX A) 4-106

X-6

COLOR GRAPHICS PAGE

TEXT INITIALIZE DISPLAY FOR TEXT 4-74
GRAPH INITIALIZE DISPLAY FOR GRAPHICS 4-75
COLOUR SET FOREGROUND/BACKGROUND COLORS 4-77
SWAP SCREEN COLOUR SUBSTITUTION 4-77
COL COLOR OF A PIXEL 4-116
PLOT PLOT A POINT OR LINE 4-78
UNPLOT DELETE A POINT OR LINE FROM SCREEN 4-80
SHAPE DEFINES SHAPE IN THE SHAPE TABLE 4-82
SPRITE DISPLAY A SPRITE 4-86
MAG SET SPRITE SIZE AND MAGNIFICATION 4-88
SGET READ CHARACTER/SHAPE FROM SCREEN 4-84
SPUT PLACE A CHARACTER/SHAPE ON SCREEN 4-83
CHAR RE-DEFINE A CHARACTER PATTERN 4-85

STATEMENT TRACING

TOF DISABLE STATEMENT TRACE 4-90
TON ENABLE STATEMENT TRACE 4-90

MATHEMATICAL

ABS ABSOLUTE VALUE 4-92
ATN ARCTANGENT 4-92
COS COSINE 4-93
EXP E RAISED TO THE POWER OF THE ARGUMENT 4-93
FRA FRACTIONAL PART 4-94
INT INTEGER PART 4-95
LOG NATURAL LOG 4-96
MOD MODULUS DIVISION 4-96
SGN SIGN OF THE ARGUMENT 4-97
SIN SINE 4-93
SQR SQUARE ROOT 4-97

CHARACTER STRINGS

ASC ASCII CODE FOR A CHARACTER 4-98
LEN LENGTH OF A STRING 4-98
MCH STRING MATCH 4-99
POS POSITION OF ONE STRING IN ANOTHER 4-99

X-7

APPENDIX C

BASIC error messages

01 - Syntax Error

The line entered is not a correct BASIC statement.

02 - Unmatched delimiter

Some delimiters, such as quotes, go in pairs at the
beginning and end of data. This error means only one
was found.

03 - Invalid line number

BASIC was expecting a line number. You either typed
something completely different or the number was too
large.

04 - Illegal variable name

Variable names may have up to three letters or one
letter and a number from 1 to 127.

05 - Too many variables

There may only be 140 different variable names in one
BASIC program. Try moving a number of separate
variables into one array. If you get this message when
you have only used a few variables then your program
has become corrupted.

06 - Illegal character

Some characters are not used by BASIC, such as '|'.
They may only be used in quotes as part of a string.

07 - Expecting operator

The next thing to be typed in should have been an
operator, such as '='. This error happens, for example,
when you type a fourth letter in a variable name.

X-8

08 - Illegal function name

User defined functions may only be called FNA to FNZ.

09 - Illegal function argument

The argument to a user defined function may only be
numeric.

10 - Out of memory

Your program has used all available memory. Check that
your program has not corrupted itself. Try reducing
array dimensions.

11 - Stack overflow

Either FOR's or GOSUB's are nested too deeply. Rewrite
that part of the program to keep within nesting
limitations.

12 - Stack underflow

A RETURN has been executed without a GOSUB to return
to.

13 - No such line number

A transfer statement, such as GOTO or GOSUB, uses a
line number that doesn't exist. Check the statement and
the one it should jump to.

14 - Expecting string variable

A string variable should be entered here.

15 - Invalid screen command

An invalid screen command has been attempted, such as
using a non existent shape table entry or an out of
range sprite number.

X-9

16 - Expecting dimensioned variable

An array should be used here.

17 - Subscript out of range

An attempt has been made to access an array element
with a subscript greater than the maximum declared in
the DIM statement.

18 - Too few subscripts

The number of subscripts in a reference to an array
must match the number in the DIM statement.

19 - Too many subscripts

The number of subscripts in a reference to an array
must match the number in the DIM statement.

20 - Expecting simple variable

An array may not be used here.

21 - Digits out of range

Digits not in expected range.

22 - Expecting variable

A variable must be used here.

23 - Read out of Data

There are no more DATA statements left for a READ
statement to read from.

X-10

24 - Read Data types differ

The value in the DATA statement must be of the same
type (numeric or string) as the variable into which it
is to be read.

25 - Square root of negative number

You cannot take the square root of a negative number.

26 - Log of non-positive number

You cannot take the log of a non positive number.

27 - Expression too complex

BASIC cannot handle an expression this complicated.
Split it down into several calculations.

28 - Division by zero

Division by zero would give an infinite result.

29 - Floating point overflow

The maximum floating point number has been exceeded.

30 - Range error

Integers may only have a value between -32768 and
+32767.

31 - Missing NEXT

A FOR statement must have a NEXT to mark the end of the
loop. Note that NEXT should be the first statement on a
line.

X-11

32 - Missing FOR

You cannot end a loop until you have begun it. Each
NEXT must have a FOR somewhere before it to start the
loop going. FOR-NEXT loops must not 'cross over' each
other.

33 - EXP has invalid argument

Check that this is really the number you wish to raise
e to the power of.

34 - Corrupted number

The value in this variable appears corrupted. This can
happen, for example, when you take a variable
containing a string and try and use it as a number.

35 - Parameter error

One or more of the parameters is incorrect.

36 - Missing assignment operator

An '=' sign is needed here. BASIC did not find one
where it was expected.

37 - Illegal delimiter

The wrong type of symbol has been used to delimit
items.

38 - Undefined function

A REF statement must be executed before a user defined
function may be called.

39 - Undimensioned variable

A DIM statement must be executed to dimension an array
before that array can be used.

X-12

40 - Undefined variable

A variable must have a value before it can be used.

42 - Interrupt without trap

An interrupt has been received for which there is no
trap. This can happen with a noisy mains supply.

43 - Invalid baud rate

Only baud rates between 75 and 19200 are valid for a
9902.

44 - Illegal opcode

The Cortex has attempted to execute an undefined
instruction. This normally only happens when you are
working in machine code.

45 - EPROM verify error

The Cortex EPROMs have become corrupted.

46 - Invalid device number

The device specified in the UNIT statement does not
exist on this Cortex.

47 - Required hardware not found

Extended commands require the memory mapper chip and E-
bus interface to be populated.

48 - Illegal in current mode

Some commands may not be executed from within a
program.

X-13

49 - Invalid address

Some commands, such as NEW, can be given an address.
Only certain addresses are valid. See the section for
the command in use.

X-14

APPENDIX D

List of monitor commands

 Command Page

? WHERE AM I 7-5
A LINE BY LINE ASSEMBLER 7-5
B BREAKPOINT SETTING 7-8
C CRU INSPECT CHANGE 7-9
D DUMP TO TAPE 7-10
E EXECUTE 7-12
F FIND WORD OR BYTE 7-12
G GOTO BASIC (WARM START) 7-13
I INITIALIZE MEMORY 7-13
L LOAD FROM TAPE 7-13
M MEMORY INSPECT CHANGE 7-14
N NEGATIVE FIND (ANYTHING BUT) 7-15
P OUTPUT PORT ENABLE/DISABLE 7-15
R INSPECT/CHANGE WP,PC, AND ST REGISTERS 7-16
S SINGLE/MULTIPLE STEPPING 7-17
T TRACE-SINGLE STEP WITH PRINTOUT 7-18
U UN-ASSEMBLER 7-19
W WORKSPACE REGISTER INSPECT/CHANGE 7-20
X TRANSFER (XFER) MEMORY 7-20

X-15

APPENDIX E

Memory and CRU maps

System memory map
 Address (Hex)
+-----------------------+ 0000
| |
| BASIC INTERPRETER |
| DEBUG MONITOR |
| AND I/O SYSTEMS |
| |
+-----------------------+
| CHARACTER SET |
+-----------------------+ 6200 (not greater than)
| USER MEMORY AREA |
+-----------------------+ Set by NEW
| BASIC PROGRAM |
+-----------------------+
| VARIABLE AND LINE No. |
| TABLES |
+--V-V-V-V-V-V-V-V-V-V--+
| |
/ /
/ /
| |
+-----------------------+
| BASIC VARIABLES |
+-----------------------+ EC00 (not less than)
| INTERPRETER WORK AREA |
+-----------------------+ F0FC
| |
+-----------------------+
| MEMORY MAPPING UNIT | F100 to F1FF
+-----------------------+
|VIDEO DISPLAY PROCESSOR| F120 to F121
+-----------------------+
| FLOPPY DISC PROCESSOR | F140 to F147
+-----------------------+
| |
| spare | F160 to FFF9
| |
+-----------------------+
|DECREMENTER/NMI VECTORS| FFFA to FFFF
+-----------------------+

Areas not used other than that marked spare will decode to
multiple definitions of existing devices.

X-16

CRU map

 Address (R12 value, Hex)
+------------------------+
| Parallel I/O | 0000 to 003E
+------------------------+
| Unused | 0040 to 007E
+------------------------+
| TMS9902 |
| RS232C port | 0080 to 00BE
+------------------------+
| Unused | 00C0 to 017E
+------------------------+
| TMS9902 |
| Cassette interface | 0180 to 01BE
+------------------------+
| TMS9911 | 01C0 to 01FE
| DMA controller |
+------------------------+
| External expansion | 0200 to FFFE
+------------------------+

The parallel I/O from 0000 to 003E breaks down as follows:

 OUTPUT INPUT

BIT 0 CLOCK ACTIVITY UNUSED
BIT 1 KBD INTERRUPT RESET- UNUSED
BIT 2 BUS INTERRUPT RESET- DISC SIZE
BIT 3 BUS TIMEOUT ENABLE DISC DENSITY
BIT 4 DRIVE SIZE FDC INTERRUPT-
BIT 5 ROM 0N- KBD INTERRUPT-
BIT 6 BELL VDP INTERRUPT-
BIT 7 UNUSED BUS INTERRUPT-
BIT 8-15 MULTIPLY DEFINED KBD DATA
BIT 16-31 MULTIPLY DEFINED MULTIPLY DEFINED

Minus sign after signal indicates active low

X-17

APPENDIX F

Screen layout and coordinates

Character cells in text mode:

+---+---+---+---+---+---+-/ /-+---+---+---+
| 0 | 1 | 2 | 3 | 4 | 5 | |37 |38 |39 |
+---+---+---+---+---+---+-/ /-+---+---+---+
|40 |41 |42 |43 |44 |45 | |77 |78 |79 |
+---+---+---+---+---+---+-/ /-+---+---+---+
|80 |81 |82 |83 |84 |85 | |117|118|119|
+---+---+---+---+---+---+-/ /-+---+---+---+
/ / / / / / / / / / /

/ / / / / / / / / / /
+---+---+---+---+---+---+-/ /-+---+---+---+
|880|881|882|883|884|885| |917|918|919|
+---+---+---+---+---+---+-/ /-+---+---+---+
|920|921|922|923|924|925| |957|958|959|
+---+---+---+---+---+---+-/ /-+---+---+---+

CHARACTER CELL No.= HORIZONTAL POSITION + 40*VERTICAL POSITION
In TEXT mode there are 24 rows (0 TO 23) of 40 chars (0 TO 39)

Character cells in graphic mode:

+---+---+---+---+---+---+-/ /-+---+---+---+
| 0 | 1 | 2 | 3 | 4 | 5 | |29 |30 |31 |
+---+---+---+---+---+---+-/ /-+---+---+---+
|32 |33 |34 |35 |36 |37 | |61 |62 |63 |
+---+---+---+---+---+---+-/ /-+---+---+---+
|64 |65 |66 |67 |68 |69 | |93 |94 |95 |
+---+---+---+---+---+---+-/ /-+---+---+---+
/ / / / / / / / / / /

/ / / / / / / / / / /
+---+---+---+---+---+---+-/ /-+---+---+---+
|704|705|706|707|708|709| |733|734|735|
+---+---+---+---+---+---+-/ /-+---+---+---+
|736|737|738|739|740|741| |765|766|767|
+---+---+---+---+---+---+-/ /-+---+---+---+

CHARACTER CELL No.= HORIZONTAL POSITION + 32*VERTICAL POSITION
In GRAPH mode there are 24 rows (0 T0 23) of 32 chars (0 TO 31

Pixel coordinates:

In graphics mode there are 256 pixels horizontally (0 TO 255)
and 192 pixels vertically. (0,0) is top left corner of the
screen.

X-18

APPENDIX G

TMS9995 instruction set

Symbols Used

G,G1,G2 - General memory addresses
R – Workspace register address
S – Symbolic memory address
E - Expression (all symbols previously defined)
I – Immediate value
T - Term (range 0 - 15)
() - Contents of the address within parenthesis
-> - 'Replaces'
: - 'Is compared to'
C – Count (0 – 15)
* - Result is compared to zero

Additional symbols for 9989, 9995 and 99000

R* - Register pair R1 and R2
G1,G1+2 - General memory address double word

 Format Status
 Type Bits
Instruction Opcode Affected Format Effect

ABSOLUTE VALUE 0740 6 *0-2,4 ABS G ABSOLUTE(G)->(G)
ADD BYTES B000 1 *0 -- 5 AB G1,G2 (G1)+(G2)->(G2)
ADD IMMEDIATE 0220 8 *0 -- 4 AI R,I (R)+I->(R)
ADD WORDS A000 1 *0 -- 4 A G1,G2 (G1)+(G2)->(G2)
AND IMMEDIATE 0240 8 *0 -- 2 ANDI R,I (R)AND I->(R)
BRANCH 0440 6 B G G->(PC)
BRANCH AND LINK 0680 6 BL G G->(PC)
 (PC)->(R11)
BRANCH AND LOAD WP 0400 6 BLWP G (G)->(WP)
 (G+2)->(PC)
 (Old WP)->(R13)
 (Old PC)->(R14)
 (Old ST)->(R15)
CLEAR 04C0 6 CLR G 0->(G)
CLOCK OFF 03C0 7 CKOF External
CLOCK ON 03A0 7 CKON External
COMPARE BYTES 9000 1 0-2,5 CB G1,G2 (G1):(G2)
COMPARE IMMEDIATE 0280 8 0 -- 2 CI R,I (R):I
COMPARE WORDS 8000 1 0 -- 2 C G1,G2 (G1):(G2)
COMPARE ONES CORRES. 2000 3 2 COC G,R ST2=AND of RBITS
 corres. to GBITS=1
COMPARE ZEROS CORRES. 2400 3 2 CZC G,R ST2=NAND of RBITS
 corres. to GBITS=1
DECREMMNT BY ONE 0600 6 *0 -- 4 DEC G (G)-1->(G)
DECREMENT BY TWO 0640 6 *0 -- 4 DECT G (G)-2->(G)

X-19

 Format Status
 Type Bits
Instruction Opcode Affected Format Effect

DIVIDE 3C00 9 4 DIV G,R INT(R)/(G)->(R)
 REM(R)/(G)->(R+1)
EXECUTE INSTRUCTION 0480 6 X G Execute instr at G
EXTENDED OPERATION 2C00 9 6 XOP G,T (>40+4*T)->(WP)
 (>42+4*T)->(PC)
 Eff add of G->(R11)
 (Old WP)->(R13)
 (Old PC)->(R14)
 (Old ST)->(R15)
 1->ST6
EXCLUSIVE OR 2800 3 *0 -- 2 XOR G,R (G) XOR (R)->(R)
IDLE 0340 7 IDLE IDLE; External
INCREMENT BY ONE 0580 6 *0 -- 4 INC G (G)+1->(G)
INCREMENT BY TWO 05C0 6 *0 -- 4 INCT G (G)+2->(G)
INVERT BITS 0540 6 *0 -- 2 INV G 1s COMP(G)->(G)
JUMP (UNCONDITIONAL) 1000 2 JMP S S->(PC)
JUMP IF CARRY 1800 2 JOC S S->(PC) IF ST3=1
JUMP IF EQUAL 1300 2 JEQ S S->(PC) IF ST2=1
JUMP IF GREATER THAN 1500 2 JGT S S->(PC) IF ST1=1
JUMP IF HIGH OR EQUAL 1400 2 JHE S S->(PC) IF ST0=1
 OR ST2=1
JUMP IF LESS THAN 1100 2 JLT S S->(PC) IF ST1=0
 AND ST2=0
JUMP IF LOGICAL HIGH 1B00 2 JH S S->(PC) IF ST0=1
 AND ST2=0
JUMP IF LOGICAL LOW 1A00 2 JL S S->(PC) IF ST0=0
 AND ST2=0
JUMP IF LOW OR EQUAL 1200 2 JLE S S->(PC) IF ST0=0
 OR ST2=1
JUMP IF NO CARRY 1700 2 JNC S S->(PC) IF ST3=0
JUMP IF NO OVERFLOW 1900 2 JNO S S->(PC) IF ST4=0
JUMP IF NOT EQUAL 1600 2 JNE S S->(PC) IF ST2=0
JUMP IF ODD PARITY 1C00 2 JOP S S->(PC) IF ST5=1
LOAD CRU 3000 4 *0-2,5 LDCR G,T T bits (G) -> CRU
LOAD IMMEDIATE 0200 8 *0 -- 2 LI R,I I->(R)
LOAD INTERRUPT MASK 0300 8 12-15 LIMI I I->(Int. mask)
LOAD ROM AND EXECUTE 03E0 7 12-15 LREX External
MOVE BYTE D000 1 *0-2,5 MOVB G1,G2 (G1)->(G2)
MOVE WORD C000 1 *0 -- 2 MOV G1,G2 (G1)->(G2)
MULTIPLY 3800 9 MPY G,R MSW((G)*(R))->(R)
 LSW((G)*(R))->(R+1)
NEGATE 0500 6 *0 -- 4 NEG G -(G)->(G)
OR IMMEDIATE 0260 8 *0 -- 2 ORI R,I (R) OR I ->(R)
RESET I/O 0360 7 RSET External
RETURN WORKSPACE 0380 7 0 -- 6 RTWP (R13)->(WP)
 POINTER 12-15 (R14)->(PC)
 (R15)->(ST)

X-20

 Format Status
 Type Bits
Instruction Opcode Affected Format Effect

SET BIT TO ONE 1D00 2 SBO E 1->(E+(R12))
SET BIT TO ZERO 1E00 2 SBZ E 0->(E+(R12))
SET TO ONES 0700 6 SETO G >FFFF->G
SET ONES CORRES. BYTE F000 1 *0-2,5 SOCB G1,G2 (G1) OR (G2) ->(G2)
SET ONES CORRES. WORD E000 1 *0 -- 2 SOC G1,G2 (G1) OR (G2) ->(G2)
SHIFT LEFT ARITH. ◊ 0A00 5 0 -- 4 SLA R,C Shift left C bits
 and '0' fill
SHIFT RIGHT ARITH. ◊ 0800 5 0 -- 3 SRA R,C Shift right C bits
 and MSB fill
SHIFT RIGHT CIRCULAR ◊ 0B00 5 0 -- 3 SRC R,C Shift right C bits
 and LSB into MSB
SHIFT RIGHT LOGICAL ◊ 0900 5 0 -- 3 SRL R,C Shift right C bits
 and '0' fill
STORE CRU 3400 4 *0-2,5 STCR G,T T CRU bits ->(G)
STORE STATUS REGISTER 02C0 8 STST R (ST)->(R)
STORE WORKSPACE POINTER 02A0 8 STWP R (WP)->(R)
SUBTRACT BYTE 7000 1 *0 -- 5 SB G1,G2 (G2)-(G1)->(G2)
SUBTRACT WORD 6000 1 *0 -- 4 S G1,G2 (G2)-(G1)->(G2)
SWAP BYTES 06C0 6 SWPB G Interchange bits 0-7
 With bits 8-15 of G
SET ZEROES 5000 1 *0-2,5 SZCB G1,G2 (INV(G1)) AND (G2)
 CORRESPONDING BYTE ->(G2)
SET ZEROES 4000 1 *0 -- 2 SZC G1,G2 (INV(G1)) AND (G2)
 CORRESPONDING WORD ->(G2)
TEST BIT 1F00 2 *0 -- 4 TB E (R12)+E->ST2

◊ If C=0 then count taken from bits 12 – 15 of R0.
 If this is zero then C=16.

 Format Status
 Type Bits
Instruction Opcode Affected Format Effect

LOAD ST FROM REGISTER 0080 8 0 - 15 LST R R->ST
LOAD WP FROM REGISTER 0090 8 LWP R R->WP
SIGNED DIVIDE 0180 6 *0-2,4 DIVS G INT(R*)/(G)->(R0)
 REM(R*)/(G)->(R1)
SIGNED MULTIPLY 01C0 6 *0 -- 2 MPYS G MSW((R*)*(G))->(R0)
 LSW((R*)*(G))->(R1)

X-21

APPENDIX H

ASCII codes

Char Hex Char Hex Char Hex

NUL 00 + 2B V 56
SOH 01 , 2C W 57
STX 02 - 2D X 58
ETX 03 . 2E Y 59
EOT 04 / 2F Z 5A
ENQ 05 0 30 [5B
ACK 06 1 31 \ 5C
BEL 07 2 32] 5D
BS 08 3 33 ^ 5E
HT 09 4 34 _ 5F
LF 0A 5 35 ` 60
VT 0B 6 36 a 61
FF 0C 7 37 b 62
CR 0D 8 38 c 63
SO 0E 9 39 d 64
SI 0F : 3A e 65
DLE 10 ; 3B f 66
DC1 11 < 3C g 67
DC2 12 = 3D h 68
DC3 13 > 3E i 69
DC4 14 ? 3F j 6A
NAK 15 @ 40 k 6B
SYN 16 A 41 l 6C
ETB 17 B 42 m 6D
CAN 18 C 43 n 6E
EM 19 D 44 o 6F
SUB 1A E 45 p 70
ESC 1B F 46 q 71
FS 1C G 47 r 72
GS 1D H 48 s 73
RS 1E I 49 t 74
US 1F J 4A u 75
Space 20 K 4B v 76
! 21 L 4C w 77
" 22 M 4D x 78
23 N 4E y 79
$ 24 O 4F z 7A
% 25 P 50 { 7B
& 26 Q 51 | 7C
' 27 R 52 } 7D
(28 S 53 ~ 7E
) 29 T 54 DEL 7F
* 2A U 55

APPENDIX I

Bibliography

The following publications by Texas Instruments are referred
to in this manual. They are not required to use the CORTEX
but are very useful for advanced software development and
designing add on hardware.

PUBLICATION AUTHOR

TMS9900 family data book Texas Instruments
Software development handbook Geoff Vincent & Jim Gill
E—bus system design handbook H. Althoff, H. Hirsch et al.

X-22

	1. INTRODUCTION
	2. THE BASIC LANGUAGE
	2.1 Introduction to the BASIC Language
	2.2 CORTEX BASIC Program
	2.3 Character Set
	2.4 Constants
	2.5 Variables
	2.5.1 Variable Names
	2.5.2 Variable Declarations
	2.5.3 Integer Variable
	2.5.4 Floating Point Variables
	2.5.5 Character String Variables
	2.5.6 Array Variables

	2.6 Operators and Expressions
	2.6.1 Arithmetic Operators
	2.6.2 Arithmetic Expressions
	2.6.3 Logical Operators
	2.6.4 Logical Expressions
	2.6.5 Relational Operators
	2.6.6 Boolean Operators
	2.6.7 Boolean and Relational Expressions
	2.6.8 Expression Evaluation

	3. ENTERING, EDITING AND SAVING PROGRAMS
	3.1 Entering Programs
	3.2 Editing Source Lines
	3.3 Saving and Loading Basic Programs
	3.4 Saving and Loading in Source Format

	4. BASIC REFERENCE GUIDE
	4.1 BASIC COMMANDS
	4.1.1 NEW
	4.1.2 SIZE
	4.1.3 LOAD
	4.1.4 SAVE
	4.1.5 LIST
	4.1.6 RUN
	4.1.7 CONT
	4.1.8 NUMBER
	4.1.9 RENUM
	4.1.10 PURGE
	4.1.11 MON
	4.1.12 BOOT
	4.1.13 ERROR

	4.2 BASIC STATEMENTS
	4.2.1 REM
	4.2.2 DIM
	4.2.3 DEF
	4.2.4 LET
	4.2.5 Control Statements
	4.2.5.1 GOTO
	4.2.5.2 IF-THEN
	4.2.5.3 ELSE
	4.2.5.4 GOSUB, POP, RETURN
	4.2.5.5 ON
	4.2.5.6 FOR/NEXT
	4.2.5.7 ERROR
	4.2.5.8 STOP
	4.2.5.9 END

	4.2.6 Internal Input Statements
	4.2.6.1 DATA
	4.2.6.2 READ
	4.1.6.3 RESTOR

	4.2.7 Input and Output
	4.2.7.1 INPUT
	4.2.7.2 PRINT
	4.2.7.3 UNIT
	4.2.7.4 BAUD
	4.2.7.5 MOTOR
	4.2.7.6 BASE

	4.2.8 Timing Statements
	4.2.8.1 TIME
	4.2.8.2 WAIT

	4.2.9 RANDOM
	4.2.10 ESCAPE and NOESC
	4.2.11 CALL
	4.2.12 Color Graphics Statements
	4.2.12.1 TEXT
	4.2.12.2 GRAPH
	4.2.12.3 COLOUR
	4.2.12.4 PLOT
	4.2.12.5 UNPLOT
	4.2.12.6 SHAPE
	4.2.12.7 SPUT
	4.2.12.8 SGET
	4.2.12.9 CHAR
	4.2.12.10 SPRITE
	4.2.12.11 MAG

	4.2.13 ENTER
	4.2.14 TON and TOF

	4.3 BASIC FUNCTIONS
	4.3.1 Mathematical Functions
	4.3.1.1 ABS
	4.3.1.2 ATN
	4.3.1.3 SIN and COS
	4.3.1.4 EXP
	4.3.1.5 FRA
	4.3.1.6 INT
	4.3.1.7 LOG
	4.3.1.8 MOD
	4.3.1.9 SGN
	4.3.1.10 SQR

	4.3.2 String Functions
	4.3.2.1 ASC
	4.3.2.2 LEN
	4.3.2.3 MCH
	4.3.2.4 POS

	4.3.3 Input and Output Functions
	4.3.3.1 CRB
	4.3.3.2 CRF
	4.3.3.3 KEY

	4.3.4 Memory Functions
	4.3.4.1 ADR
	4.3.4.2 BIT
	4.3.4.3 MEM
	4.3.4.4 MWD

	4.3.5 System Functions
	4.3.5.1 SYS
	4.3.5.2 SYS(0)
	4.3.5.3 SYS(1)
	4.3.5.4 SYS(2)
	4.3.5.5 SYS(3)
	4.3.5.6 SYS(4)
	4.3.5.7 SYS(5)
	4.3.5.8 SYS(6)
	4.3.5.9 SYS(7)
	4.3.5.10 SYS(8)
	4.3.5.11 SYS(9)
	4.3.5.12 SYS(10)
	4.3.5.13 SYS(11)
	4.3.5.14 SYS(12)
	4.3.5.15 SYS(13)
	4.3.5.16 SYS(14)
	4.3.5.17 SYS(15)
	4.3.5.18 SYS(16)
	4.3.5.19 SYS(17)
	4.3.5.20 SYS(18)
	4.3.5.21 SYS(19)

	4.3.6 Other Functions
	4.3.6.1 COL
	4.3.6.2 RND
	4.3.6.3 TIC

	5. THE VIDEO DISPLAY PROCESSOR
	6. CHARACTER STRINGS
	6.1 General
	6.2 String Variables
	6.3 Longer Strings
	6.4 Arrays of Strings
	6.5 String Comparisons
	6.6 Reading Strings
	6.7 Indexing into Strings
	6.8 String Concatenation
	6.9 Character Pick
	6.10 Character Replacement
	6.11 Individual Character Replacement
	6.12 Character Insertion
	6.13 Character Deletion
	6.14 Convert String to Number
	6.15 Convert Number to String
	6.16 Character Functions

	7. MONITOR
	7.1 Introduction
	7.2 Monitor Commands
	7.2.1 List of Commands
	7.2.2 Notes On Command Format
	7.2.3 Memory Data Checking

	7.3 Monitor Command Descriptions
	7.3.1 ? = Where Am I?
	7.3.2 A = Line By Line (Zero Label) Assembler
	7.3.2.1 Expressions
	7.3.2.2 Constants
	7.3.2.3 Program Counter Relative
	7.3.2.4 Text (and Unprintable Characters)
	7.3.2.5 Assembly Address Change
	7.3.2.6 Peculiarities

	7.3.3 B = Breakpoint Inspect/Change
	7.3.3.1 Breakpoint Zero

	7.3.4 C = CRU Inspect/change
	7.3.5 D = Memory Dump to Cassette
	7.3.6 E = Execute
	7.3.7 F = Find Word or Byte
	7.3.8 G = Goto BASIC
	7.3.9 I = Initialize (Pattern) Memory
	7.3.10 L = Load Memory From Cassette
	7.3.11 M = Inspect/Change Memory
	7.3.12 N = Negative 'Find'
	7.3.13 P = Port Toggle
	7.3.14 R = Inspect/Change WP, FC, ST Registers
	7.3.15 S = Single Step
	7.3.16 T = Trace
	7.3.16.1 Tracing and Single Stepping through MIDs

	7.3.17 U = Un-Assembler/Disassembler
	7.3.18 W = Inspect/Change User Workspace Register
	7.3.19 X = Transfer (Xfer) Data From One Block of Memory to

	7.4 Programming Notes
	7.4.1 Choice of Memory Locations
	7.4.2 Ending Machine Code Programs
	7.4.3 Interrupt Mask

	8. MACRO INSTRUCTIONS
	8.1 Pre-defined MIDs
	8.2 MID Calling Sequences
	8.2.1 Breakpoint: BKPT
	8.2.2 Message Output: MSG
	8.2.3 Read ASCII Character: READ
	8.2.4 Write ASCII Character: WRIT
	8.2.5 Echo ASCII Character: EKO
	8.2.6 Write Hex Word: WHXW
	8.2.7 Read Hex Word: RHXW
	8.2.8 Write Hex Nibble: WNBL

	APPENDIX A - ALPHABETICAL LIST OF BASIC KEYWORDS
	APPENDIX B - LIST OF BASIC KEYWORDS BY TYPE
	APPENDIX C - BASIC ERROR MESSAGES
	APPENDIX D - LIST OF MONITOR COMMANDS
	APPENDIX E - MEMORY AND CRU MAPS
	APPENDIX F - SCREEN LAYOUT AND COORDINATES
	APPENDIX G - TMS9995 INSTRUCTION SET
	APPENDIX H - ASCII CODES
	APPENDIX I - BIBLIOGRAPHY

