CORTEX BASIC

The BASIC used on the Cortex contains many statements which

will be unfamiliar to readers who are used to Microsoft.

Beginning

this month, we’ll be taking a brief look at the keywords and their

functions. This month: graphics.

Power BASIC, with some additional keywords necessary to

=% make use of some of the features of the Cortex. Some of

these involve the graphics commands which we are making the
basis of this article.

The video display processor in the Cortex is, in fact, capa-
ble of four display modes, but only two of these are implement-
ed by the BASIC. The two types of display are accessed by the
TEXT and GRAPH commands.

TEXT

The TEXT mode provides 24 40-character rows in two col-
ours and is intended to maximise the capacity of the TV screen
to display alphanumeric characters. A diagram of -the screen in
this mode is shown in Fig. 1. The character cell number is equal
to the horizontal position (0 to 39) plus 40 times the vertical
position (0 to 23). The only items that may be displayed in
this mode are the alphanumerical character set, which are def-
ined on a six by eight grid of pixels (six pixels across, eight pix-
els down). There are a possible 256 patterns that can be dis-
played and on power-up these are defined by the BASIC in the
EPROM. Examining the characters shows that the first 32 are
symbolic representations of the corresponding ASCI! control
codes, the next 64 are standard upper case ASCII, the next 32
are ‘small capitals’ rather than lower case ASCII (these small
capitals are used in the error messages), and the remaining 128
characters are not assigned any meaningful pattern.

However, any or all of these character patterns may be
changed by using the CHAR command. This has the format

BASIC on the Cortex is a derivative of Texas Instruments’

CHAR argl, arg2, arg3, argd

where argl is the number of the character to be changed (0 to
255), and arg2, arg3 and arg4 define the new bit pattern for the

This photograph shows lines plotted in GRAPH mode. The
pixel resolution is 256 by 192 but the limitation on colour
means some areas (noticeably to the left of the shape) get
‘blocked in’ colour. :

44

character. These arguments are 16-bit numbers and define the
character row by row from top to bottom, with a 1 producing
the foreground colour and a 0 producing the background col-
our. For example, if you type CHAR32,20,20,20: TEXT then
your screenful of ‘spaces’ suddenly develops freckles! (Inci-
der;tally, executing TEXT clears the screen and homes the cur-
sor).

Another fun thing to do (although completely pointless!)
is to scramble the character set using random numbers. Try

10 FOR 1=0 TO 255

20 CHAR 1, RND*255 RND*255 RND*255
30 NEXT I

40 TEXT

and then type in LIST after running the program. Not so easy
to read, eh? To get back the original patterns, just execute a
reset with the switch on the rear and the Cortex will re-load
the character table from the EPROM.

GRAPH

In GRAPH mode the screen dimensions change to that
shown in Fig. 2, a grid of cells 32 by 24. The character cell
number is given by the horizontal position (0 to 31) plus 32
times the vertical position (0 to 23). In addition, the screen
may also be considered to consist of individual pixels (256
across by 192 down). Thus, each character cell in this mode is
eight by eight pixels in siz€, offering a better pattern resolu-
tion than the six by eight pixels of TEXT mode.

As in TEXT mode, executing the GRAPH statement will
clear the screen and home the cursor, which in graph mode is
an invisible pixel curSor. An alternative method of clearing the
screen is to use the program statement

PRINT “<oC>”

which has the advantage of wiping off any text messages or
plotted lines but leaving sprites unaffected. The reason why
this statement works will be covered in a future article: suffice
it to say that the statement executes the ASCII control code
for Clear Screen.

Pixels are numbered from 0 to 255 horizontally and from
0 to 191 vertically. The origin is at the top left-hand corner of
the screen as shown in Fig. 2.

PLOT AND UNPLOT
The PLOT statement is used to turn on individual pixels
on the text/graphic plane. The basic format is

PLOT argl,arg2 TO arg3,arg4

By leaving out various parts of the statement, different actions
can be performed. If the entire statement is executed, then a
line is drawn in the current foreground colour from the pixel
co-ordinates given by argl and arg2 (argl = horizontal, arg2 =
vertical) to the pixel co-ordinates given by arg3, arg4. The in-

ETI FEBRUARY 1983

FEATURE

0,0

0,191

w0 | @ 42 43 a4 45 77 78 79

117 | 118 119

880 881 882 883 884 885 917 918 919

920 921 922 923 924 925 957 958 959

Fig. 1 Screen position map for the Cortex in TEXT mode.
Here the screen is divided into a 40 by 24 grid which can only
display the character set — sprites are not possible in this
mode.

255,0

[} 1 2 3 4 5 L 29 30 31
32 33 34 35 36 37 P 61 62 63
64 65 66 67 68 69 NSE 93 94 95
| |
| | | |
704 705 706 707 708 709 T 733 734 735
736 737 738 739 740 741 T 765 766 767

255,191

Fig. 2 The screen position map for the Cortex in GRAPH
mode. The grid is now 32 by 24 squares and each square may
contain members of the character set or the shape table. In
addition, up to 32 sprites may be displayed using the shape
table patterns, and individual pixels may be set or reset.

visible pixel cursor is left at arg3, arg4 (horizontal, vertical).

If argl, arg2 are omitted, ie PLOT TO arg3,arg4, then a
line is drawn from the current graphic cursor position to the
co-ordinates given by arg3, arg4. If the TO arg3,arg4 part of
the statement is omitted, ie PLOT argl,arg2, then the single
pixel specified by the co-ordinates argl, arg2 is set to the cur-
rent foreground colour. The UNPLOT statement has the same
format and variants as the PLOT statement except that the
line or pixel is removed instead of being plotted.

COLOUR, COL
Colours may be set up in TEXT or GRAPH mode by
means of the COLOUR statement. The format for this is

COLOUR foreground colour, background colour

The two colour arguments can take the values O to 15, the cor-
responding colours being given in Table 1, Cortex Part 1, Nov-
ember 82 issue. If the foreground colour only is given, eg COL-
OUR 6, then the current background colour is used.

Two colours only are allowed in TEXT mode. Executing a
COLOUR statement in a program or in immediate mode will
recolour the entire display. By contrast, all 16 colours may be
displayed at once in GRAPH mode, with the limitation that
each horizontal line of eight pixels (ie one character cell
width) can only have one foreground colour and one back-
ground colour. Try this program to see what this means:

10 COLOUR 4,7: GRAPH
20 COLOUR 1,13: PLOT 0,0 TO 255,191

The pixels in the text/graphic plane can be tested for their
colour by reading the code into a variable using the COL func-
tion. The format is

var = COL arg1,arg2

ETI FEBRUARY 1983

where argl, arg2 are the horizontal and vertical co-ordinates of
the pixel to be tested. The variable var will now have a value
equal to the colour code of the pixel.

SHAPE, SPRITE, MAG
The SHAPE statement is used to define one of 256 possi-
ble eight by eight pixel shape definitions. The format is

SHAPE arg1,arg2,arg3,arg4 arg5

where argl is the shape table entry to use (0 to 255), arg2 is
the 16-bit integer pattern of the first and second row of the
shape, arg3 gives the third and fourth rows, arg4 gives the fifth
and sixth rows and arg5 gives the seventh and eighth rows. For
arg2 to arg5 the most significant byte defines the first row and
the least significant, the second row. For example, to define a
solid block use SHAPE 2, —1, —1, —1, —1.

Once shapes have been defined they can be displayed on
screen using the SPRITE command. Each sprite plane can hold
one sprite, giving a maximum of 32 on screen at once, and if
a sprite on a plane is rewritten into a new position the old one
is automatically erased. The format for the statement is '

SPRITE argl,arg2,arg3,arg4,arg5

where argl is the sprite plane to hold the sprite (0 to 31), arg2
is the horizontal co-ordinate of the sprite’s top left pixel, arg3
is the vertical co-ordinate of the sprite’s top left pixel, arg4 is
the shape number to use for the pattern (0 to 255) and arg5 is
the sprite colour (0 to 15).

There are two limitations to the use of sprites. One is that
only four sprites at a time may be displayed on a given hori-
zontal line: an attempt to add a fifth will make the overlapp-
ing portion invisible. Try this program:

10 COLOUR 1,15: GRAPH: MAG 1,0
20 SHAPE 10, -1, —1, -1, —1

30 FOR T=1 TO 14

40 FOR 1=1 TO 100

50 SPRITE T, I-T*2, I-T*2, 10,T
60 WAIT 1

70 NEXT I: NEXT T

The second limitation is that you can only use a sprite
plane if all the ones above it have been used. Hence you must
place your first sprite on plane 0, your second on plane 1 and
so on. Of course, once a plane has been initialised in this way
you can wipe it if necessary by setting its sprite to an all-zeros
shape or setting its colour to transparent.

The MAG statement defines both the size and the defini-
tion of the sprites. The format is

MAG sprite magnification, sprite definition size
If the sprite magnification is O every bit in the shape definition

used for the sprite will be displayed as one pixel. If the magni-
fication is non-zero then each bit will be displayed as two pix-

‘els horizontally and vertically. If the definition size is zero

then one shape table entry will be used to build the sprite. If it
is non-zero then four entries will be used. These entries are
joined in the following way to build a 16 by 16 point sprite: .
top left, shape n; bottom left, shape n+1; top right, shape n+2;
bottom right, shape n+3, where n is the shape number given to
the sprite statement. The shape table entries must start on a
four entry boundary, so valid values of n are 0,4,8,12 etc.

Note that the SHAPE, SPRITE and MAG statements will
only work if the Cortex is in GRAPH mode.

ETI

45

