CORTEX USERS GROUP

Y
S.P.L.

USER GUIDE -1

U

SPL 1.30 User's Manual

by Mike Riddle

May, 1981

T

(I

f‘j

]

SPL 1.30 User's Manual

(C) Copyright 1981 Evolution Computing
All Rights Reserved

This publication, or any parts thereof, may not be reproduced in any
form, electronic or manual, for any purpose without the written
consent of Evolution Computing.

Evolution Computing makes no warranty, expressed or implied, including
but not 1limited to any implied fitness for a particular purpose,
regarding these materials. The sole and exclusive 1liability of
Evolution Computing shall not exceed the purchase price of the
materials described herein.

Information concerning this product, bug reports, and general comments
may be addressed to:

Evolution Computing
1718 E. Campbell #33
Phoenix AZ 85016
ATTN: Mike Riddle

Evolution Computing, or its agents, may, at their option choose to
extend assistance beyond that specified herein. In no event shall such
extension of service be construed as an extension of liability or an
obligation of further extension of service.

SPL 1.30 User's Manual

1- INTRODUCTION tO SPL l......“..Ql..'.;l...l.'l.;....l.lll.'..l.. 1

2. USing SPL © € 00000 00c0o0 3
30 META NOtatiOﬂ © 0000000000000 0000000000000 000000000000006000000000 6

LANGUAGE ELEMENTS .ecccecccccccscccscsscsssssscsccassasscscssascsnsss
Keywords ccceecceccceccccccccccscoccscscsccsccscsccscscsscscscscsccscsacse
Identifiers cccecececcccsccescscsccascscsoscscsascscsascsoscsscssancsa
VariableS cccccccccccccsacscscsccscsccsssacccscs
Literals cccceecececosceosscsossscacoscsscscscssscsscscossscascsasascscse
Integer VariableS cccccecececcccccccccccccscccscccsacsccsccssnse
Real VariableS .ccecececceccasccccsccscscccccscsccsscsscccccccse 10
String VariableS ceccecccsccscccsscscscsscssscossnssascssosse 12

. .
EELsEWN -
e e

wnN =
0

O EEII

- -
L] L]

POINTER VariableS ..ceccceccceccccscasscacncscsacannnas R K|
1. Integers used as Pointers .cccccccecccscccccccscssccccssccess 13
2. Address Literals cececcecescescesescososescssscsscsccsscsacsscss 13
.3. Example of Pointer Nomenclature ceccceccececcccccccccsscscsccsss 14
4., Type of Data using Pointers .cceececeececccccscocsssascccsscanes 14
5

. Use of Unsigned Multiply and Divide ccceceeeccscccccasccacaas 14

e EXPRESSIONS cccccececececscececscssccscacacsacsscssacsscstsscsccscscace 15
T1e TErMS cecececccccccscsscssosccscsscsscssssosssssssscsssscsscssscscae 15
2. 0perators c.ccescsccccccccces 15
3. Mixed mode eXpPressSiOnNS ccececccecccccecsccccccscscscccsccsscacse 15
4. Logical EXPresSSiONS .cceeececscescessccsscssssscsscacascsscancas 10
5. Data and Address exXpresSSiONS c..ccecsescscsccscsssssscssscses 10
6. Integer, Real, and String EXpressions ..ccceeceecececcccescess 16
7. Predefined Functions ..cececceccceccecsccccsccscscccccscscscnsaee 17T

. ARRAYS and SUBSCRIPTING cccccccccccsccccscccsccscccscsccacsccscscscace 19
1. Introduction ceeeeecccececcscccssscsccccscsccssscacsssccancscses 19
.2. Declaring an Array cceccecccccccccscsccccsscsscccsscssscascscccsscacss 19
.3. Extended Use of SubsScripting .cccccccccccscccscccccscasscscssass 20

SPL PROGRAM STRUCTURE cecceceeccecsccscsescscsscscscscccssoscssnscccs 21
1. COMMENLS teeeeessccoosccsasscsssoscssssasscscssacsscssccscssassscscase 22
2. Statement Labels .cceeccvccescscscsccsasscsccscsccscscscscsscsnscas 22
.3. Statement format .ececececccccccccecsccsscccccsssccscsccscsccscsce 22
y Options .e.ce.. -4

@ o ™ ™ ™ N3

SPECIFICATION STATEMENTS ccceeccsccsccsscsosasescsccsscasssscsasans 23
1. Specifying GLOBAL and EXTERNAL references ..cc.cceececcccscess 23
2. The INTEGER and POINTER specification statements .ccccceceeee 25
3. DOUBLE specification statement. ecceececececescccscccosccnass 20
4. The BYTE Specification ceeececeeecccccccccoccccsscscscscccacsss 20
5 REAL variable speoification c.ccececececcccccsccccsccsccccnnes 27
6

. STRING Variable Specification ccceeceececcccossscoscosccscsese 28

10. EXECUTABLE STATEMENTS cccccececcececcccacscacecscscscscssccsscscace 29
10.1. The Assignment Statementceeecceccesccssessssccsscscences 29
10.2. GO statement .ccccececccccccccsccscssscscscccscsssscescsccscscscces 30
10.3. The Computed GO Statement e.ccctcceccccccccccccsscscsccccssesses 30

-11-

SPL 1.30 User's Manual

10,4, JTF...THEN...ELSE ctecceceecsccssccsasscccssasscsscsscssssscssss 31
10.5. LINK statement .ccceceeecceccccccccscsscsssasccscscsscsascsacscae 31
10.6. PROCEDUREs and the DO statementcecceecccccccccacccsees 32
10.6.1. Exiting from @ DO 1OOP cececesccccccsccscccscsssssssscscsss 33

11. CONSOLE output of an integer as a character eccccececccecccceccsss 34
12. The COPY statement ccececcececccececsrsassaccccossasscccacsssssaces 34
13. TRACE facilitieS .ceeececceccccccccccocsssssssssccssscccccccssaee 34
14. Embedded ASM language statementscecececceccccccccccas ees 35

15. TEXT INPUT/OUTPUT ceeececcoccsccsoscsccscssssossasssscsscsssssscscsses 30
15.1. Input Edit LiSt8 ceecceeccesccscccccsccsccccccsscsccacacsacecs 38
15.1.1. Integer or Real variable address referenceseeesesecess 38
15.1.2. Integer or Real Fixed length referenceseccceeeesccces 38
15.1.3. String Address Specifications ccceceeeecescccsscccccaccses 39
15.1.4. String Address with length specifications ..eeceeeceeeceess 39
15.1.5. String address expression with delimiter ...ccceceeeeecsss U0
15.1.6. Tab to POSition ceeeecececcecceccccccsascccsscscsscscccsances U0
15.1.7. Mark Column PoSition ciccceecececcccscccccccccsnsancccnsces HO
15.1.8. Skip COlUMNS sececeveeccccccoccoscccsscccscosscsasassscsces Ul
15.1.9. Skip to character pattern cceceeeccecccsccsssssscsscscccces U1
15.1.10. SKIP specified character ...cceceececececccesoscsccscsncccee 41
15.1.11. Term Class Delimited string specifications. ...ccceeceeees 42
15.1.12, IF.e.THEN...ELSE teecceccocececsacsoscscoccconsssancsssanes 43
15.2. Output Edit ListS ceceeececcsoccceccacccscsccsssssssccccccnss Ul

1. String data expresSSioNS ..cceeececcecsccsccscsccscascesces HU
2.2. Integer data expresSSiONS ..ccecceeccssccsccsscssscsscccssss Ul
2.3. Real data expresSSiONS cecceccsceccscscoscccsasnsscsosccsascnecs U5
.2.4. Tab to selected COlUMN .cvveeeeccacscssscsssssccssccsscascs U5
2.5. SKip COlUMNS ¢ceeceecssscssscccscsssccossscossscsacsssscosace 45
2.6. Mark present column PoSition ceeeeeccesccesccsascssscccsss 46
2.7. IFee.THEN...ELSE tceeecccecccacccsoscasccccscoascccsocssssssce 46

16. DIRECT FILE INPUT / OUTPUT cecceeeccocccccacscacsoccaancscnnsancne . U7
16.1. The OPEN Statement .ccecececccccccecscccccccccasaccscscccccnccsce UT
16.2. The CLOSE Statement ..cceeeecccccccocscsscescscscccsccsscsccass UT
16.3. The READ and WRITE statements cceceeceees cecccctecsans cecens 48
16.4. The SEEK statement ..cccececcecccsccscscscccasscsccscccssscccss 49
16.5. CREATE fileS cccecoccocs csescccnas ceccccne cececseccssccssses U9
16.6. DELETE f11€@ ceeeeccccccssscccccsoscsssossscssssseasccsssscscssssce U9
16.T. RENAME file cccececcceccces eeecesescssscesscssccssscscas ecescsene 50
16.8. File Size Function FSIZE ceccceecccccccccccssascccccccccsaeas 50
16.9. Error Handling with SPL ...cccceeccecccccoccccscsccssassasacs 50

1T. DATA ORGANIZATION TOOLS cceccecccecsccscaccascsascacscsacasscscascnse D2
17.1. SLrUCLUreS .eeeeececeesscscescsacsssssccssssscccassscsssses 52
17.2. Buffer Alocate and Releaseccceeeccceccss cecsecccans ceee 5N
17.3. QUCUES ceevecerenccnnnnne cecens ceccessccane eesesscsssscsscsee 55
1T U, LiStS8 tecieecececcscasosscscscsoscscsccssascssssccssssssssssccscss 5O
T.4.1. Specifying a LISt .cecveeecerccassccesvssccnssssscssssscscse 56
T.4.2. Loading Data into a LISt .cccceeeccecccccccccconccasccccece 56
T.4.3. Scanning @ List ..ccceeeececcccccccccncccscesascsssassannee 5T

— d — ek

-111-

SPL 1.30 User's Manual

17.5. staCkS © 0000000000000 00000000000000000000000000000000000000OCC 58

18. SUBRmeES © 0 00 0000 0000000000000 00000000000000000000000000000 59

18.1. Assembly Language Subroutines c.cccecececceccssccsccccsssssces 01
18.2. CODE modules ®© 0 00 00 00 0000 0000 T 00 000 OO 00O OCOOEOCOIOEOEOCEPOCIEOEO OO POCIOCETOOOS OO 63

19. Preliminary Information on Future Releases of SPL ...ccccecees 64
19.1. Features to be implemented in SPL 1.80 ..cceeeccccocccccceas OU
19.1.1. Virtual Disk File Read/Write/Seek «.ccecececcecccccccceses 6U
19.1.2. TEXT VariableS cccccecccccccccccccccccasssscscsccssccacscccncans OU
3. DO WHILE and DO UNTIL cccccccccccccccsocccscsccsssacscssccces OU
de AVMEM function ececececcccccecsssscccccccccsssssssccccaccsee OU
5. QUEUE operations ccecccccecscscsccsccscscscsscssscscsscssossscsccces OU
6. LIST operations cecececcececccsccscceccccccsssssccccccccssse OU
Features to be implemented in SPL 2.0 cccecccececccccccacecee 65
« Arrays and Subscripting ccccccececccccccccccccccccscccccces 65
1. 1introduction ccccecceccccsacacccsccscscsasccanacs cesesae eses 65
2. Multi-dimensional ArrayS «ceeceeeceeccecccccccccccccccccaces 65
3. Specifications of several elementsS .ccececececiceccccseces 06
4. Specifying by 1liSt ceeeeececcccccccsscccsccccssccssssscaee 06
5. Specifying by Range .eeececcesccecssssccssscascacesssaces 06
6. Specifying by Count ..cccececccccccccccccsosssscasssccnsas 6T
T. Specifying All .cceceeecceccccacsccccscsossccnsaccsssssnnse OT
8. Mixed specifications ceececeeecccoscccsescsccescccessaces OT
. Automatic Statement LOOPINE eceeceeccccccoccccsscacscccncee 08
. LISTs and Automatic LOOPINE cccecececceccecsccccssccascaaces 69
. Declaring an Array ccceccececccccccceccccccscscsscscscscscsscsscccece 09

—— v‘_l

fiv-

e

-

Ol eV UDCI 'S Nauuad

1. INTRODUCTION to SPL

SPL is an acronym for Systems Programing Language. It has been
designed to make the Jjob of writing systems programs such as
interpreters, diagnostics, compilers, and systems utilities, easier.
It is in the process of development, and the present implementation is
" not the complete language. However, it does represent a powerful, and
often simple solution for many types of programs.

The fundamental idea behind SPL is to have a language rich in powerful
constructs. Most "high 1level" languages require that the user write
much of the code to perform certain simple operations, rather than
Just describe what operations are desired. The basic constructs are
not powerful enough. For example, in most 1languages, one needs to
write many loops to scan and process data. SPL in 1its full
implementation should all but eliminate the need for the user to write
loops directly - the language will create them as necessary from the
statement of the problem and optimize them at the same time.

Several facilities are needed by systems programs that are not often
needed in simple applications programs. Chief amoung these is an easy
interface to assembly code. In SPL, you may use inline assembly
language statements using the same identifiers as used by SPL.

Another needed feature of SPL 1is the ease of using indirect
addressing, or pointer variables. The addresses of data may be
calculated in an expression and the result used to get the data
actually desired. This allows high level implementation of complex
data structures.

Dynamic memory allocation 1is provided to be used with pointer
variables and structures to allow efficient use of memory.

Subroutines may be coded in SPL or assembly language, and may be
nested and recursive, if desired. They may respond to a varying number
of calling parameters, determined each time the subroutine is
executed. Also, subroutines may have multiple entry points with a
varying number of parameters used by each.

Programmer written loops are supported with the DO statement and the
PROCEDURE statement. Procedures may be executed in-line, as well as
called remotely with the DO statement. The procedure that 1is the
target of the DO statement may be specified by a pointer variable,
allowing the use of assigned procedures, and seperation of procedures
for accessing data and performing operations on it.

SPL 1.30 User's Manual

Formatted Input / Output is simplified by having the format
specifications in the I/0 data 1list, and by having the default
specification be "free-form". Also, You may GET FROM and PUT TO string

variables, and the I/0 1lists may contain IF-THEN-ELSE clauses for
selective and adaptive formating.

Direct I/0 is supported in multiples of 128 bytes. You may seek and
mix reading and writing to any file. Direct I/0 may be used with
pointer variables and structures to speed up I/0 access, as data does

not need to be transfered from the I/0 buffer, but can be worked on
directly.

Expressions allow complete mixed-mode arithmetic, and provide a 1large
number of pre-defined functions.

The one "restriction"™ of the language is that all variables must be
declared as to type. No defaults are provided. Since SPL provides such
freedom of use of data, it becomes necessary to have the compiler
check usage. Because of this "restriction", many SPL programs will
work the first time they compile correctly.

This manual describes the release version that is designed to operate
under Marinchip System's MDEX operating system. It should work, with
less efficiency during file I/0, under their Network Operating System.
A stand-alone kernel 1s being developed for wuse with ROM-based
products, so that an application may be coded in &6PL, and the
resultant code executed from a small ROM system. Disk file I/O0 will
not be supported in the ROM kernel. Instead, XOP calling sequences
will be defined for you to code your own file I/O0 drivers.

-2

SPL 1.30 User's Manual

2. Using SPL

An SPL program is first prepared in a text file using the text editor.
This file should be given the program name.SPL. Next This file 1is
compiled by the SPL compiler, providing the output in relocatable
format in a file with a name ending in ".REL". Then all necessary REL
files are combined by the link editor using the command SPLINK.

You should create three files for each program you write in SPL. If
you call your program TEST, for example, the three files, and their
contents, are:

TEST.SPL the SPL source text
TEST.REL the compiler generated relocatable code
TEST the executable program

After creating the neceséary files, enter your source text using the .
EDIT command:

EDIT TEST.SPL= the first time
or :
EDIT TEST.SPL to make changes later

When you have finished editing the program text, compile it using the
SPL command:

SPL TEST

And finally, use the SPLINK command to make the executable program:

SPLINK TEST

To run your program, simply enter it's name as a command:

TEST

The actual process followed by the computer is more complex, but you
do not need to understand it to use SPL. The following description 1is
provided for your information only.

1. SPL reads TEST.SPL and writes assembly code into TEMP1$

2. SPLOPT modifys TEMP1$ to optimize generated assembly code.
3. The ASM program is called to read TEMP1$ and make TEST.REL
4., SPLINK prepares a more complex LINK command and calls the
5. LINK command, which produces the TEST executable file.

SPL 1.30 User's Manual

The SPL command actually offers several options for compilation and
listing of your program. The full format specification is:

SPL <reloc file>=<spl file>[,[<asm code file>][,<listing file>]

Where <reloc file> will have a type .REL if no type is specified,
<{spl file> will have a type .SPL if no type is specified,
<asm code file> will contain the generated ASM code, and

TEMP1$ will be used if no <asm code> file is specified,
and <listing file> will contain a numbered source listing
with error messages and expanded COPY file text. It may
be CONS.DEV or PRINT.DEV, if desired.

If a single program name is given without types in place of
<reloc file=<spl file>, or only a drive indicator is specified
for <reloc file>, then the same file name with appropriate types
will be used. Some examples:

SPL test uses test.REL and test.SPL
SPL 1/=2/test uses 1/test.REL and 2/test.SPL
SPL test,,cons.dev uses test.rel and test.spl, and makes a

listing on the console.

If you wish to use file names that do not have .TYPE extensions in the
file name, simply end the file name with a period. As an example, to
compile a program with source on drive 2 and executable file also on
drive 2, but without saving the relocatable output, you could use the
following sequence of commands:

SPL temp2$.=2/prog uses temp2$ as .REL and 2/PROG.SPL
SPLINK 2/prog=temp2$.

If you just wish to compile a program to check for errors, you may use
the command form:

SPL =<{program name>

This form will not assemble the compiled output.

-

—
——

SPL 1.30 User's Manual

To make programs that use subroutines, you list each subroutine name
after the main program name on the SPLINK command. If more than two
subroutines are wused, then you will need to make your own LINK
command. An example using two subroutines is:

SPLINK main,sub1,sub2

If you use more than two subroutine names, the SPLINK command will not
work for you. In this case, copy the file SPLINK.LNK to a file set up
for 1linking your program, perhaps ended with ".LNK". As an example of
this, for the test program, you would:

CREATE TEST.LNK,2

EDIT TEST.LNK=SPLINK.LNK

t

i

in test.rel,subil.rel,sub2.rel,sub3.rel,subl.rel
<press return to finish inserting>

end .

From now on, to link versions of the test program, use the command:
MAKE test

The make command generates the command:
LINK TEST=6TEST.LNK

which will perform the required linking operations.

SPL 1.3V user's manuai

3. META Notation

SPL is described in this manual in both english text and in Meta
notation. Meta notation 1s a means of specifying syntax very
precisely. To understand the statement descriptions, you should be
aware of a few fundamental notations.

Mandatory choices are specified within braces {} with each choice
seperated by a vertical bar |. You must use one and only one of the

choices. As an example:
{ INTEGER | POINTER }

means that you must use one of the words, either INTEGER, or POINTER.

Things enclosed in brackets [] are optional and may be used or
omitted. An example is:

[<statement label)>]

The notation <term> is used to describe something defined elsewhere.
All syntax rules specified in that definition are to be followed. In

the above example, the statement label 1is optional, but if it is
present, the rules for making a statement label must be followed.

Any term followed by ... may be repeated as often as desired. An
example of this is:

<identifier> [<integer literal>] ...

which indicates that an identifier must be present, and may be
followed by as many integer literals as desired.

Anything else that is wused in a description may be considered a
keyword or punctuation, which must appear exactly as described, except
that upper and lower case do not matter except in string literals, and
any number of spaces may be present wherever any space is present.

-6-

T

SPL 1.30 User's Manual

4. LANGUAGE ELEMENTS

Any programing language is made up of basic elements. These elements
may be keywords, 1like READ, variable names and literals, and the
punctuation required by the language. To learn any language, it is
often best to first 1learn the rules for making and using the basic
elements, and then learn how to combine them.

Each type of statement has its own required syntax. Syntax refers to
the "grammer" of the statement. It simply means that certain special
characters are used as punctuation to tell the compiler what you mean,
and they must be used exactly as specified in this manual.

The basic elements in SPL are:

1. Keywords
2. Identifiers
3. Variables
4, Literals

They are used to make expressions and statements.
4.1. Keywords

A keyword is either a word or punctuation that must be used exactly as
it appears in this manual. They are used to tell SPL what type of
statement or option you wish to use, and to logically seperate parts
of the program.

4.2. Identifiers

Identifiers are names that you make up for your program. Any
identifier must fit the following pattern:

An alphabetic character
none or more alphanumeric characters

The identifier must not be the same as an SPL keyword. The character
"underline" may be used to seperate part of a name for readability.
For example, MYNAME and MY_NAME may be used interchangably. There is
no preset limit on how many characters may be used in an identifier,
but you must type each of them every time you use the name, so do not
make names longer than necessary for clarity. Some valid identifiers
are:

I JJ PAYROLL MASTER_DATA NAME

SPL 1.30 ¥ser's Manual

4.3, Variables

Variables are holding places for your data, and you give a different
identifier to each of them. The rules for making 1literals are
different for each type of variable.

SPL currently supports the following types of variables:

16-bit INTEGER variables

8-bit BYTE variables

32-bit DOUBLE precision integer variables
64-bit REAL (floating point) variables
dynamically allocated STRING variables
address POINTER variables

4.4, Literals

Literals are the constants you use within the text of your source
program to specify actual values to be used by the program. Examples
of literals are:

'3 =17 3.3E-2 "John's house™ adr(BETA)

As an example, an integer variable named I can hold several different
values. If you wish to put the value 3 into the variable I, you could
use the statement:

I=3;

In this example, the variable reference is I, and the literal is 3.

SPL 1.30 User's Manual

4.4.1. Integer Variables

Integer variables represent integer (no decimal fractions) data in the
computer. In SPL, one may choose amoung three kinds of integer
variables, BYTE, INTEGER, and DOUBLE.

BYTE variables represent values between -128 and +127, and require one
byte of storage each. They may be used to contain character data when
each character is to be manipulated seperately.

INTEGER variables represent values between -32,768 and +32,767. They
use two bytes of storage each. Most integer arithmetic 1is performed
using INTEGER type variables. INTEGER type variables always start on
an even memory address boundary. :

DOUBLE precision integer variables represent values between
-2,147,483,648 and +2,147,483,647. Each DOUBLE type integer requires
four bytes of storage. DOUBLE type variables may be used for
accounting purposes, with 1large disk data files, and in other
applications requiring a large numeric range and faster speed or
better accuracy than REAL variables. DOUBLE type variables always
start on an even memory boundary.

The rules for forming integer 1literals are 1identical for BYTE,
INTEGER, and DOUBLE type variables, except for the range of values
that may be used with each type. All integer 1literals must fit the
following pattern:

Optional + or - sign
One or more digits
Ended by a character other than .

If the first digit is a zero, then the literal is considered a
hexidecimal number, and valid digits are:

0123456789 ABCDEFabecderf

If the first digit is not a zero, then the 1literal 1is considered a
decimal number, and only 0 through 9 are considered valid digits.

Negative numbers are 1in twos complement form. This results in the
following equivalences for 16-bit integers:

00000 to OTFFF are positive values 0 to +32767
OFFFF to 08000 are negative values -1 to -32768

Some examples of valid integer literals are:

0 OFC3 1 -32767 +25 32767 4s

orL |.3V usSer's nManuai

4.4.2. Real Variables

Real variables are capable of representing numbers that are not exact
integers, and numbers that vary from very large to exceedingly small
values. However, they are not always represented exactly in the
computer. For example, it 1is not possible to represent the value .1
exactly in binary. Real variables give you a large range of values,
but loose the exactness of integers.

Real numbers may assume values between:
3.37350334183 #* 10°-80
and
T.23700557733 ®* 107475
Real literals must fit the following pattern:

An optional leading + or - sign
One or more digits and a required decimal point

optionally, an exponent specification which fits the pattern:
The character "E"
an optional + or - sign

one or more decimal digits
ended by any non-digit character

The literal may not have any embedded blanks.

All real variables in SPL ' are stored in 8 bytes of memory, always
starting on an even address boundary. In the current implementation
of SPL, they are stored in "System/370 Floating Point Format®", since
that computer first popularized this form of real number
representation.

Picture each byte of a real variable as follows:

EE MM MM MM MM MM MM MM

The first byte stores several bits of information. Picture Each bit of
this byte as follows:

MS E6 E5 E4 E3 E2 E1 EO

-10-

]]

SPL 1.30 User's Manual

MS is the sign of the mantissa, and thus the sign of the entire
numbers value. If MS=1, then the value of the variable is 1less than
zero. If MS=0, then the value of the real number is greater than zero.
Note that twos complement notation is NOT used. The MS bit has no
effect on the mantissa digits MM MM.

The bits E6 through EO are the exponent. It is expressed in what is
called "excess 64 notation". That is, exponent values of 41 hex and
larger indicate numbers greater than or equal to one. Exponent values
less than 41 hex represent real numbers whose absolute values are less
than one.

The exponent is the power of 16 that the mantissa should be multiplied
by to get the real value. The "formula™ for understanding the floating
point representation is:

16"(EE-41 hex) ® M.M MM MM MM MM MM MM
Some sample values are:

0 00 00 00 00 00 00 00 00

1 41 10 00 00 00 00 00 00

-1 C1 10 00 00 00 00 00 00
10 41 A0 00 00 00 00 00 00
-10 C1 A0 00 00 00 00 00 0O
15 41 FO 00 00 00 00 00 00
16 42 10 00 00 00 00 00 00
255 42 FF 00 00 00 00 00 00
256 43 10 00 00 00 00 00 00
4095 43 FF FO 00 00 00 00 00
4096 44 10 00 00 00 00 00 00
5 40 80 00 00 00 00 00 00
.1 40 19 99 99 99 99 99 99

Note that .1 is an irrational number in binary. This is one reason why
you get answers like 1.99999999999 instead of 2 when you do some math
operations on a computer.

-11-

L J

[~ ~

L

orkL 1.3V vser's nmanuail

4.4.3. String Variables

String variables are used to store text. A string is a variable length
sequence of characters that may NOT contain an ASCII NUL (00)
character. The length of the string may be zero, in which case it 1is

called a NULL string. All string variables are initialized to null
variables until they are used.

String literals must follow this pattern:

The character "

none or more ASCII characters

(the quote character " is represented by "")
ended by the character "

followed by any character except "

Some examples are:
"ALPHA ¢ 3" "123 S. 4th St." "He said, ""Hellol"""

There are two types of strings: constants and dynamically allocated
variables. A constant 1is stored in the program code itself and is
never changed.

String space is dynamically allocated as needed from the unused memory
space that exists between the end of the program and before the start
of the operating system. Each string variable is assigned a two byte
address pointer located on an even address boundary. This pointer
contains a 2zero to 1indicate a NULL string, or the address of the
appropriate text buffer.

The text buffer starts on an even address boundary. The first word is
the number of active references to the text buffer. If this is zero,
then the buffer must never be released into free space for reuse. This
is used to indicate string constant storage within the program.
Otherwise, it indicates a dynamically allocated string buffer, and the
value of this word is the 'number of string variables that are
currently assigned to this text. (If two or more strings are assigned
to the same text, only one buffer is used, but both are counted as
references. If both are reassigned to different values, then the text
buffer area will be released to free memory.)

The second word of the text buffer is the count of the number of
characters, not counting the NUL (00) end-of-string delimiter.

The actual text follows the count word and is ended with an ASCII NUL
(00) byte.

=12~

L

S

SPL 1.30 User's Manual

5. POINTER Variables

POINTER variables are a form of INTEGER type variable that are used
when working with memory addresses as data. They may be used exactly
as you would use a normal INTEGER type variable. In addition, they may
be used as an indirect address pointers to the data you actually wish
to be used. Normally, A variable stores data to be used in {it. A
pointer variable's data 1is the address of the data you wish to use.
This is a powerful tool that is usually only available in assembly
language.

In SPL, there are two forms of pointers. First, you may use an integer
as a pointer variable by preceeding it with the character "€". Second,
you may use a STRUCTURE.

5.1. Integers used as Pointers

Any integer variable or expression that is preceeded by an @ character
is used as an indirect reference. Thus, €1000 means the data stored at
address 1000 in memory. 6IX means to get the data in IX and use it as
the address of the actual data.

This may be combined into expressions in several ways. 6IX+2 means to
take the data in IX and use it as the address of the actual data, to
which 2 1is added. If IX contains 1000 and memory location 1000
contains 25, then 6IX+2 means 27.

€(IX+2) means to take the data in IX and add 2 to it, and use that as
the address of the data. If IX contains 1000, and 1002 in memory
contains 95, then €(IX+2) means 95.

5.2. Address Literals

If you are going to use pointers, then you also need a way to describe
the address of a particular variable. This 1is similar to numeric
literals. To do ordinary arithmetic, you need literals such as 19 and
-25 as well as variables such as IX and J.

An address literal is written ADR(VARIABLE) where VARIABLE is the name
of the variable whose address you desire. Note that you may NOT use an
expression inside the parenthesis. If you desire the address of the
location 2 bytes in memory after the variable IX, you would write
ADR(IX)+2.

Typically, you might use a pointer variable as a switch between two
different variables:

P=ADR(I); DO something; P=ADR(J); DO something;
If the procedure "something®™ uses P as a pointer variable, then the

first time it is called, it will use I, and the second time it will
use J.

—_—

! — 1
[_ —_—

]

[s R s O s B

I
| S—

[

.o
— —

! i
— L.—.J

T
—

- —

SPL 1.30 User's Manual

5.3. Example of Pointer Nomenclature

As an example, assume that a program has three integer variables, I,
J, and K, stored in memory as shown:

memory address label address contains
01000 I 47
01002 J 01000
01004 K -19

In this case ADR(J) 1is exactly equal to the literal value 01002, J {is
equal to 01000, and 6J is equal to the contents of memory location
01000, which is A47.

If the statement J=adr(K); is performed, then the following results:

ADR(J) is still equal to 01002, J is now equal to 01004, and &J 1is
equal to -19 (the data stored in memory at the address which J
contains as data).

5S.4. Type of Data using Pointers

Normally SPL knows the type of data from the name of the variable
since all variables have been declared in a TYPE statement, such as
REAL, INTEGER, or STRING.

When using a pointer, you can specify any location in memory. The SPL
compiler may not know how to handle the data it finds there. SPL will
consider it an integer unless you specify a different type of data by
using the characters ".", "¢m, ngn opn ngn,

6IX means the data is an integer

€.IX means the data is a real number

6$1X means the data is a string

6#IX means the data is a double precision integer
641X means the data is a byte integer

5.5. Use of Unsigned Multiply and Divide

Since pointer variables contain addresses, not signed integer values,
it is necessary to perform any multiplication and division upon them
with unsigned arithmetic. SPL provides the #%* and // operators for
this purpose. An example of their use might be to access an array
element. In normal subscripting, you might specify TABLE(INDEX) for an
element that is in the INDEX numbered position in TABLE. Using pointer
variables, you could access it by:

@ (ADR(TABLE)+(INDEX-1) ##8)

This calculates the address of element number INDEX in TABLE when each
element takes 8 bytes, (as REAL variables do).

-14-

SPL 1.30 User's Manual

6. EXPRESSIONS

Variables and 1literals may be combined with various operators into
expressions that can be evaluated by the ocomputer to produce a
resulting value. An example of an expression is:

RATE®*TIME-DEDUCTIONS

An expression is composed of TERMS combined with OPERATORS. A TERM
represents a single value to be used in the expression, and an
OPERATOR specifies how terms are to be combined.

6.1. Terms
In SPL, terms may be any of the following:

An integer or real numeric literal

A string literal

A predefined function

An indirect reference

a variable name

Another expression enclosed in parenthesis

6.2. Operators

Operators are assigned priorities similiar to those used in algebra.
This means that multiplications are performed before addition, etc.
The valid operators, listed in order of priority are:

1 Term evaluation (including parenthesis)

2 ° (raise to a power)

3 unary + or - (leading signs)

y &y (multiply and divide)

y «8yy (unsigned multiply and divide)

5 MOD (modulus - the remainder after division)
6 + - (numeric addition and subtraction)
6 « (string concatenation)

7 <= < < >= > = (logical relations)

8 NOT (bit by bit inversion)

9 AND (bit by bit AND)

10 OR XOR (bit by bit OR and Exclusive OR)

6.3. Mixed mode expressions
Mixed mode expressions are allowed. This means that integer and real
literals and variables may be used within the same expression. If

either term combined by an operator is real, then the integer term
will be converted into a real value before the operation takes place.

-15-

——
et

SPL 1.30 User's Manual

6.4. Logical Expressions

Logical expressions, including the relational operators, return an
integer value. 0000 is False, and any other value is considered True.
The relational operators return OFFFF for True.

The bit manipulation operations AND OR XOR and NOT perform their
operation on each bit of an integer. Thus, 0005 AND 0006 is 0004:

0000 0000 0000 0101 (0005 hex)
0000 0000 0000 0110 (0006 hex)

AND 0000 0000 0000 0100 (bit by bit AND function)

The modulus function returns the remainder after division. Thus 9 MOD
4 is 1, since 9/4 is 2, with a remainder of 1.

6.5. Data and Address expressions :

Expressions that produce an address, such as pointer variable
expressions, are refered to as address expressions. In the rest of

this manual, an address expression means either an identifier or a
pointer variable expression. '

Data expressions are the normal type of expressions. They produce
actual data as a result, rather than the address of the data.

6.6. Integer, Real, and String Expressions
In the rest of this manual, the term integer expression means an

expression that has, or can have, an integer value as a result. For

example, "ALPHA"=ANS produces an integer result, a logical value 0000
or OFFFF.

In a 1like manner, Real and String expressions refer to expressions
that have the desired type of end result when evaluated.

-16-

; T T

SPL 1.30 User's Manual

6.7T. Predefined Functions

SPL offers several predefined functions that may be used
expressions as terms. They are:

MATH FUNCTIONS

All of the following math functions that return a real result
are accurate to only 7 significant digits in the current
release of SPL, since they are implemented in 32-bit REAL
arithmetic. This will be upgraded in a future release of SPL.

SQRT(X) real square root
LN(X) real natural logarithm of X
EXP(X) real exponential (e raised to the X power) of X
LOG(X) real common (base 10) logarithm of X
ALOG(X) real common exponential (10 raised to the X power) of X
ABS(X) real absolute value of X
RND real random number between 0.0 and 1.0
IRND(<integer 1imit>) integer random value with a range from
' zero through limit-1

SIN(X) real sine of X in radians

COS(X) real cosine of X in radians
TAN(X) real tangent of X in radians
SEC(X) real secant of X in radians
CSC(X) real cosecant of X in radians
COT(X) real cotangent of X in radians
ASIN(X) real arcsine in radians of X
ACOS(X) real arccosine in radians of X
ATAN(X) real arctangent in radians of X

INTEGER SHIFT FUNCTIONS

All of the following functions take a 16-bit integer argument,
perform the desired binary shift upon that value, and return
an integer result.

SHIFTL(value,places) shift value left places, 0 fill on right

SHIFTR(value,places) shift value right places, 0 fill on left

SHIFTA(value,places) shift value right places, sign extend
(copy MSB) on left.

SHIFTC(value,places) shift value right places, circular fill
(bits shift out right go in left side).

-17-

in

SPL 1.30 User's Manual

I/0 FUNCTIONS

CONIN returns an integer value of the next console key pressed.
The character is NOT echoed to the console display.

CONRDY returns OFFFF if the console has an unread character
available, and 0000 if no character is available.

IOSTAT returns an integer containing the system error status code
of the previous file I/0 operation.

FSIZE(<{file name string expr>) size of file in sectors returned

ADDRESS (POINTER) FUNCTIONS

NRPARM integer number of parameters transfered to a subroutine
PARMADR(integer expression) address of the desired parameter
ADR(VARIABLE) integer address of the specified variable
IXADR(table,index,elementsize)

‘this function returns the address of the indexed element

of table, where each element uses elementsize bytes.

STRING FUNCTIONS

LEN(string expression) integer number of characters in string

CMDLINE string containing command line parameters

CHR(string expression,integer expression)

The character at the indicated position of the string is
returned as an integer. Zero is returned if the position
is past the end of the string.

STG(integer expression)

The integer is returned as a single character string having
the ASCII value of the integer expression. .

SUBST(string expression, from integer expression,length expression)
A string containing the specified number of characters
from the specified string expression, starting at the
given position, 1is returned.

UCASE(string expression)

A string containing the same characters, except that all
alphabetic characters have been changed to upper case,
is returned.

LCASE(string expression)

A string containing the same characters, except that all
alphabetic characters have been changed to lower case, is
returned.

-18-

—
—

SPL 1.30 User's Manual

T. ARRAYS and SUBSCRIPTING

T.1. Introduction

An array is a collection of related data items of the same type. Each
array has a single name, and may have more than one variable in it.
The size of an array is the total number of individual variables
stored in {it.

Picture an array of three integers, called A. It might look like this
in memory:

234 -98 45

You may refer to a specific element (variable) in an array by using a
subscript. This 1is an expression that specifies which element of the
array you wish to use.

In the example above, A(1) is a variable that currently has the value
234 stored in it. A(2) holds -98, and A(3) contains 45.

Subscripts are written by entering the array name and then the
character (followed by an expression indicating which element you
wish to use, and then ending the subscript with the character).

For example, you may write A(NR) which means that the current value of
the variable NR should be used to pick out which element of array A
that you wish to use. If NR contains the value 2, then A(NR) refers to
A(2).

T7.2. Declaring an Array
To create and use an array in SPL, it must be declared in a type
statement such as REAL, INTEGER, STRING, etc. You may l1ist the array
name and the largest value of each subscript. For example,

REAL A(5), B(4), C;
specifies that A is an array having 6 elements numbered 0 through 5, B

is an array having 5 elements numbered 0 through 4, and C is a real
variable.

-19-

SPL 1.30 User's Manual

T.3. Extended Use of Subscripting

By specifying the size of the maximum subscript, you will make room
for the array. You are not required to do this, however. By not
specifying a size for an array, you can use subscripting to access
other variables, located after the "array" variable.

There is no checking performed when using subscripts. This can lead to
trouble in poorly designed programs, but can also be used to
advantage. Since all data is allocated space in order specified, you
may Set up a list of variables:

INTEGER A,B,C,D,E,F;
An then use them either in the normal way, or by making subscripts:

A(0) refers to A
A(1) refers to B .
A(2) refers to C, etc.

The number of bytes used for each element of the array is determined
by the type of the referenced data. Since A is INTEGER, 2 bytes are
used for each element. If A were specified as a BYTE variable:

BYTE A(1); INTEGER B,C,D,E,F;
then the relationships would be:

A(0) and A(1) refer to the two bytes of A
A(2) refers to the first byte of B
A(4) refers to the first byte of C, etc.

It should be understood that the above "trick"™ should never be used
just for its own sake. If there is no positive advantage to be gained
from refering to variables in both an array subscript notation and by
individual name, use only one form or the other. Good programing
practice always dictates that the simplest and clearest techniques are
better than the tricky or complex. SPL allows more freedom than should
be necessary - don't abuse it. '

«20=-

(O
N

SPL 1.30 User's Manual

8. SPL PROGRAM STRUCTURE

SPL program modules are classed as either a main program or a
subroutine. Each module is seperately compiled then combined with the
system LINK program.

A main program is one that receives control from the operating system
when the program is to be run. Each executable program must have one
and only one main program.

A subroutine is a module that receives control when CALLed from either
a main program or another subroutine. When its END. statement is
executed, control will return to the calling program.

Subroutines and programing related to them will be discussed in a
seperate section of this manual. A main program follows this format:

Option statements, if any
The program statement

(as many SPL statements as needed)

END. (marks the end of the main program.)
The program statement consists of':
PROGRAM <program_identifier> ;

The program identifier is the label that the link editor will use for
this module in its memory map. The word PROGRAM and the semicolon are
keywords and must appear exactly as specified. The program identifier
is also the statement label of the first statement you want executed.
As an example:

PROGRAM TEST;
TEST: § first statement §

®ee0eco oo

END.

The END. statement causes control to return to the operating system,
and must be the last statement in the module. There must be one and
only one "END." statement per module. Usually, any variable type
declarations and procedures are included between the PROGRAM statement
and the starting label.

-2l=

SPL 1.30 User's Manual

8.1. Comments

Comments may appear any place a space may appear, except inside a
string literal. Comments start with the character ¥ and end with the
next § character. It is possible to have several lines be one comment.

An example of a statement with a comment 1is:
PROGRAM UPDATE $ update the transactions data file % ;
8.2. Statement Labels

All SPL statements except options, PROGRAM, SUBRQUTINE, and CODE may
have a statement 1label preceed them. A statement 1label 1is an
identifier followed by a colon. Examples are:

TEST: PROGRAM_ENTRY: ERROR_ROUTINE: alldone:

Also, labels may be declared externally (see SUBROTINES) by placing
an asterisk after the colon:

NEXTCOMMAND: # ERRORPROCESS: #

These labels are used by statements that can transfer control, such as
GO TO, IF, and DO, to indicate where the desired part of the program
is.

8.3. Statement format

SPL allows the use of either upper or lower case letters, having
identical meanings, except during string 1literals, when upper and
lower case characters are considered different.

Most SPL statements end with a semicolon, and may occupy as many lines
as necessary. No particular spacing or column alignments are
necessary. . The only line-oriented statement in the language are ASM,
which lets the rest of the 1line be an embedded assembly language
statement, and COPY, which lets you include multiple text files in
your source program at compile time. .

8.4. Options
Currently, the only option statements allowed are:
.TABS; or .NbTABS;
Note the period that starts all option statements. These two
statements let you select whether the assembly language code generated

by SPL will have tab expansion, which requires more disk space and
time, or just a space between each field, which is the default option.

=22 =

—

SPL 1.30 User's Manual

9. SPECIFICATION STATEMENTS

In SPL, all variables must be declared in a specification statement
before being used. Normally, all specification statements in a program
are placed immediately after the PROGRAM or SUBROUTINE statement, as
the storage for the variables is located in the program exactly where
the specification statement occurs. Since specification statements are
NOT executable, you should not give them labels or GO TO them.

There is a specification statement for each type of data:

BYTE
INTEGER
DOUBLE
REAL
STRING
POINTER

There are also specification statements related to different data
organizations, discussed later in this manual:

STRUCTURE
STACK
QUEUE

There is no required order to these statements and each may be used as
many times as needed. The one rule concerning them is to never place
them where they will be executed. The best place is at the start of
the program, as discussed above.

Parameters of subroutines must be declared like any other variable,
but must not be assigned data values by specification statements
within the subroutine.

9.1. Specifying GLOBAL and EXTERNAL references

SPL allows variables to be used by more than one module of a program
by using the LINK editor to communicate the address of variables to
each module when the program is prepared. A GLOBAL variable is one
"that is defined and stored within the module itself, but is wused by
other program modules such as subroutines. An EXTERNAL variable is one
that 1is defined in another module, and you wish to use it in the
current module. Variables that are only used within the current
module, (which includes most variables), are called LOCAL variables
when discussing GLOBAL and EXTERNAL references.

-23=-

SPL 1.30 User's Manual

You can specify that an identifier is GLOBAL by following the
identifier with an asterisk, "®*", when defining it in a specification
statement, or before the colon if the identifier is a statement label.
Local identifiers that are followed by an asterisk may be used by
other modules of the program, since the % tells the LINK editor to
allow this. A variable to be used by subroutines might be specified in
the main program as:

POINTER MONITOR® OF800;

You specify that a variable is EXTERNALLY defined by preceeding the
identifier with an asterisk, "®#", when it 1is specified. In a
subroutine, MONITOR would be an external variable, and would be
referenced by preceeding the identifier with an "@w.

POINTER ®MONITOR;
GO EMONITOR;

One very important point to remember is that data assignments in the
specification statement may not be made for EXTERNAL variables. This
is because the compiler generates a data statement for it, but when
the variable is referenced externally, it has already been defined in
the other module. In practical terms, if the asterisk preceeds the
identifier, you may not follow it with literals in the specification
statement.

-2Y-

B2 Y

T o

—_—— p———y
—

SPL 1.30 User's Manual

9.2. The INTEGER and POINTER specification statements

Integer variables are declared using the INTEGER or POINTER statement.
The only difference between INTEGER and POINTER in the current release
of SPL 1s documentation. Declaring an integer a POINTER alerts the
reader that that variable is going to be used for indirect addressing.
In a future release of SPL, POINTERs may take 4 bytes, as they will
store the type of the destination variable automatically.

The form is:

{ INTEGER | POINTER } <integer specification>
[, <integer specification>] ...

An integer specification is:

<identifier> [*] [<data specificationd]

or

& (identifier>

or

<identifier> [®*] (<integer literal))

to reserve <integer literald+1 words of integer space
for array subscripting or list use.

And a data specification is:
one or more integer literals or address constants of the form:
ADR (<identifier>)
Some examples are:
INTEGER i, j,k 34, h OFF, table 1 2 3 45 6;
INTEGER room(20);
POINTER aptr,bptr, roomptr ADR(room);
POINTER iptr ADR(i), jptr ADR(i) ADR(J);
If the identifier is preceeded by #, it is defined EXTERNALLY. If it

is followed by an ®, then it 1is a GLOBAL variable which may be
referenced by other program modules.

-25-

-~

—~——

. ‘

—

\ ——n

J

e

(

SPL 1.30 User's Manual

9.3. DOUBLE specification statement.

Double precision integer variables are specified with the DOUBLE
statement. The form is:

DOUBLE <dpi spec> [, <dpi specd>] ;
where <dpi spec> is:

<identifier> [*] [<data specificationd]
or

& d{identifier>
or

<identifier> [*] (<array size>)

The array size specification, if present will allocate (<array
size>+1)%) bytes of storage, as array subscripts start with 0.

A <data specification> is one or more integer literals, seperated by
spaces.

9.4. The BYTE specification

BYTE variables are defined by the BYTE specification statement. 1Its
form is:

BYTE <bytevar spec> [, <bytevar spec>] ;
where <bytevar spec> is:

<identifier> [®*#] [<data specification)>]
or

& (identifier>
or

<identifier> [*] (<array size>)

The array size specification, if present will allocate (<array
size>+1) bytes of storage, as array subscripts start with O.

A <{data specification> is one or more integer or string 1literals,
seperated by spaces.

-26-

SPL 1.30 User's Manual

9.5. REAL variable specification

Real variables are specified by using the REAL statement. The form
is:

REAL <real specification> [, <real specification>] ... ;
where a real specification is:

<identifier> [*] [<real 1literal)> ...]
or
® (identifier>

or
<identifier> [®] (<integer literal))
to reserve real table space

Note that several real literals may be specified, seperated by spaces,
to create real data tables. Some examples are:

REAL a,b,c,d 34.2 table -1.0 2.4 3.09 3.1E-4 ;
REAL alpha, beta, gamma, greek_sums;

If you follow the identifier with an ®, then the variable 1is defined
for the LINK editor to communicate to another module. To allow other
subroutines to reference a real variable, you might use:

REAL pi®* 3.14159;

A subroutine that wishes to use the above defined variable should
place an ® BEFORE the identifier name. A subroutine that references
PI, above, would specify:

REAL #pi;

Note that data may not be specified when defining an external variable
reference.

-27-

SPL 1.30 User's Manual

9.6. STRING Variable Specification

The STRING statement is used to specify string variables. The form is:
STRING <string specification> [, <string specification>] ... ;
where a string specification is:

<identifier> [*] [<string data specificationd]
or
® <{identifier>

and a string data specification is either a string 1literal, or an
integer 1literal. If an integer 1literal is used, a single character
string having that value is defined. This is one way of specifying
ASCII control characters.

Some examples are:

STRING name "MIKE", other_name, ctlc 03;
STRING alpha;

If the identifier is followed with an ®, then the variable is defined
externally for the LINK editor to communicate to other modules, so
that they may reference the variable. An example is:

STRING company_name®* "XYZ Mfg. Co.";

To reference this string in another module, include the & BEFORE the
identifier name. A sSubroutine that wuses the above string would

- specify:

STRING ®company_name;
Note that such external specifications can not specify data.
A string specification may also be an array dimension:
<identifier> [*] (<array size>)
Note that no data may be assigned to a string array within the
specification statement. Each element of the array takes two bytes and

contains the buffer pointer address for that string element of the
array.

-28~

SPL 1.30 User's Manual

10. EXECUTABLE STATEMENTS

" Executable statements are those statements that will generate

executable code for the processor to perform. An executable statement
is performed when control is transfered to it.

Normal SPL programs specify some program label that is to receive
intial control, or begin the program execution. From that statement
on, each statement is executed in the order it physically occurs in
the program, unless that statement transfers control to a label of
another statement, (as GO TO does, for example).

If a statement can transfer control to a different statement label, it
is considered a CONTROL statement. All other statements only transfer
control to the next statement in the program when they finish their
task. The most common example of this type of statement is the
variable assignment.

10.1. The Assignment Statement

The assignment statement allows you to evaluate an expression and
assign its value to a variable. The syntax is:

[label[®#]:] <address expression> = <data expression> ;

The character "#" after the label specifies the label as a GLOBAL
symbol. Other program modules can reference the label.

An address expression is a variable name or an indirect address
expression that identifies the desired variable that is to be changed.

The data expression is evaluated, and the resulting value is assigned
to the variable identified by the address expression. Any necessary
mode conversions between real and integer will be performed. A string
variable may not be assigned a numeric expression and a numeric
variable may not be assigned a string expression.

Some examples are:

ALPHA=3.2 * SIN(C)*2.1 ;
6data_pointer=B+8(ADR(TABLE)+2);
C=D;

If the destination variable 1is not the same data type as the
expression, the value of the expression will be converted to the type

of the destination variable after the expression is completely
evaluated.

-29-

SPL 1.30 User's Manual

10.2. GO statement

You may transfer control to any labeled executable statement with the
GO statement. Its form is:

{ GO | GOTO | GO TO } <label address expression) :

As an example:

GO test;
eees.§ other statements §
test: a=a+l;

The GO statement will cause execution to continue with the statement
labeled test:.

As another example, the use of pointer variables allows assigned GO TO
branches:

ptr=ADR(labela); GO éptr;

ptr=ADR(labelb); GO €éptr;

The GO 6ptr; statement will transfer control to either 1labela: or
labelb:, depending on which label has been assigned to ptr.

10.3. The Computed GO Statement

+SPL also offers a computed GO statement that lets an integer-valued

expression select one of several program labels and GO to that 1label.
The form of the computed GO is:

GO (<label> [, <label>] ...) <integer expression);

Note that only program labels may be used in the label 1ist. Address
expressions and pointer variables may NOT be used. As an example:

GO (alpha,beta,gamma) control;
delta: .ceeeeee

This statement will go to alpha if control=1. If control=2 then it
will GO TO beta. Likewise, if control=3 then it will GO TO gamma. If
control is less than one or more than 3, the statement labeled delta
will be executed, and no branch will be taken.

-30-

SPL 1.30 User's Manual

10.". IF...mENI.'ﬂ‘SE

The IF statement is the main decision making statement in SPL. It has
the form:)

IF <integer expression)> THEN <statement)> [ELSE <statement)>]

Note that no ; is required after the IF statement since it is ended by
another statement, which will have its own ;.

Any executable SPL statement may be used as the conditional statement.
If you desire more than one statement to be performed as a result of
the IF test, you may enclose them in {BRACES}. As an example:
IF cmd="GO" THEN {flag=1; GOTO process;}
ELSE flag=0;

10.5. LINK statement
Normally, when a program ends, the computer operator must type in a
command to specify what should be done next. The LINK statement 1lets
an SPL program send a command to the operating system directly, and
then ENDs the SPL program to perform that command. The form of the
LINK statement is:

LINK <string expression> ;
As an example, the statement:

LINK "DIR 2/" ;

will end the program and display the directory of drive 2. Note that
the string expression may be any valid operating system command.

-31-

SPL 1.30 User's Manual

10.6. PROCEDUREs and the DO statement

Often, a group of statements must be performed at several different
places in a program or performed many times. SPL allows this within a
program by setting up the group of statements as a PROCEDURE, and then
DOing the procedure.

The form of a procedure statement is:
[<statement label> :] PROCEDURE <identifier> [*] ;

The optional asterisk allows the procedure to be executed from outside
the module it is defined in.

A procedure has the form:

PROCEDURE statement
other SPL statements
END;

If control is transfered to the PROCEDURE statement's label, or "falls
through™ from the statement before the procedure, then the procedure
will be performed as if PROCEDURE and END; were not present. This
allows the procedure to be executed in-line.

To perform the procedure, the DO statement is used. Two forms of the
DO statement are allowed. The first is:

DO <procedure identifier> ;

This form will perform the procedure and then return to the statement
following the DO. Note that the 'identifier used by DO is the
identifier that follows the word PROCEDURE, not the statement label of
the PROCEDURE statement.

The second form allows looping and performing the procedure several
times. Its form is:

DO <procedure identifier)> :
<{index address expression> = <initial value expression>
, <limiting value expression> [, <increment expressiond] ;

The index variable is set equal to the initial value, and that value
is compared to the limit value. If the increment is positive, then
index must be <= 1limit for the DO to execute the procedure. If the
increment 1s negative, then the index must be >= limit for the DO to
execute the procedure. Each time the procedure 1is performed, the
increment, or 1 if no increment is specified, is added to the 1index,
and the test is made again. This allows the procedure to be performed
several times with one DO statement.

All expressions are evaluated only once, at the start of the DO

statement, and changes to variables referenced in those expressions by
the procedure will not affect the execution of the DO statement.

-32-

SPL 1.30 User's Manual

As an example:

PROGRAM loop_demo;
INTEGER ix;

PROCEDURE test;
PUT "test procedure. IX=",ix;
END;.

loop_demo: DO test: ix=1,4;
END;

will print out:

test procedure. IX=1
test procedure. IX=2
test procedure. IX=3
test procedure. IXzlY

If the procedure identifier is omitted from the DO statement, then the
procedure immediately follows the DO statement and ends with the next
END; statement:

DO : I=1,3;
PUT I;
END;

will print out:

1
2

3
10.6.1. Exiting from a DO loop

Normally, a procedure, whether specified in a procedure statement or
by an in-line procedure as shown above, MUST exit through the
associated END; statement. To exit a DO procedure without going
through the END; statement, use the EXIT; statement. This will abort
any additional executions of the calling DO loop. As an example:

DO : I=1,10;
put 1;

~1f I=last then exit;
put "more to go";
end;

This would perform 10 iterations of the code, unless the variable LAST

were less than 10. If so, the DO statement would be aborted when the
EXIT; statecment is executed.

-33-

L

SPL 1.30 User's Manual

11. CONSOLE output of an integer as a character

Direct console output may be used to send a control sequence to the
console or echo characters read in using the CONIN function. The
format is:

CONOUT <integer data expression) ;

For example, to send a backspace to the console:
CONOUT 8;

12. The COPY statement

Sometimes you will wish to use exactly the same statements in several
different programs or subroutines, for example, in defining a disk
data record, or common variables. You can put the SPL source code into
a file and then include it in each SPL module with the COPY command.
Its form is:

COPY <file name>

Note that there is no ; at the end of the COPY statement. Also,
nothing can follow the file name on the same line, and the COPY
statement must all be on the same line. It will be replaced with the
text of <file name> during compilation. An example is:

COPY setup.spl
13. TRACE facilities

SPL provides two forms of the TRACE statement to assist in debugging
your programs. TRACE LABELS will display a message on the console for
each statement 1label that 1is executed, to show you the path your
program is taking.

The second form will trace the execution of each machine instruction
as 1t 1is executed, showing you the instruction mnemonic, address, the
contents of any registers, and the results. It is helpful to have a
listing of the compiled assembly language code handy to interpret what
you will see. If you did not specify an intermediate file on the SPL
command, then the compiled assembly code will be in file TEMP1$ for
you to print out.

The form of the TRACE statement is:
TRACE { LABELS | EXECUTION } { ON | OFF } ;

Trace statements cause the final program to run much slower and
require more memory space.

-34-

SN [SN D [AN i O A BN

SPL 1.30 User's Manual

14. Embedded ASM language statements

SPL allows you to include assembly language statements in-line with
your SPL statements by using the ASM statement. It starts with the
keyword ASM. The next character following the M of ASM is ignored as a
delimiter. The rest of the 1line will be the assembly 1language
statement.

As an example:

PROGRAM asmtest;

INTEGER {, J;

asmtest:

GET 1, J;

§ Shift I right J bits &
ASM shift mov i,r0 get i

ASM srl r0,1 shift it
ASM mov r0,i put it back
J=3-1;

IF jJ<>0 GO shift;

PUT {1;

END.

Registers RO through RT may be used freely, although any SPL statement
may change them. Register R8 is a base index register for subroutine
parameters, R9 is a subroutine parameter address stack, and R10 is the
utility stack pointer. R11 is used for BL instructions, R12 is used
during PUT statements for editing, and R13, R14, and R15 are used by
BLWP instructions. Any assembly language statement may use any
register, but r8,r9, and r10 must be left unchanged when the next SPL
statement occurs. You must consider that any SPL statement may change
all registers.

-35-

L

]

]

C

SPL 1.30 User's Manual

15. TEXT INPUT/OUTPUT

SPL Provides two forms of Input/Output statements. Text oriented 1/0
is used for console and disk text file use, and DIRECT I/0 is used to
access disk or device files in multiples of 128 byte sectors, without

any editing. ,

Text I/0 involves editing operations that convert data between ASCII
character representations and the internal forms data are stored in.

The GET statement 1is used for text input, and the PUT statement is
used for text output. Also, you can GET FROM a string, scanning the
string and converting it into other data forms. You may also PUT TO a
string using the PUT editing facilities to create text strings.

GET and PUT may also use disk text files by using the OPEN and CLOSE
statements to select disk files.

The forms of the GET statement are:

¥ Read input from the console §
GET <input edit 1ist> ;

¥ Read input from a string in memory ¥
GET FROM <string expression> : <input edit 1list>

-e

¥ Read from a disk text file §
GET (<file descriptor>) <input edit list)> ;

¢ Read from a non-string location in memory £
GET FROM (<address expr>,<length expr>) <input edit 1list>;

This 1last form 1s used to edit text contained in direct disk I/0
buffers into normal variable forms. This allows SPL to work with data
stored in almost any format.

The address expression gives the starting location in memory of the
input text, and the length expression is equal to the maximum number
of characters to be scanned. There is no requirement on the data
format except that an ASCII NUL (00) will always force input editing
to terminate as if that character were the end of the "line"™. An ASCII
RETURN (13) will also effect an end of line condition. In all other
cases, the line will be ended by the number of characters specified
being scanned. :

-36-

SPL 1.30 User's Manual

The forms of the PUT statement are:
PUT [:] <output edit list) ;

PUT to the console device. A colon immediately after the keyword PUT
causes the output to remain on the current line after the end of the

put statement. This 18 used to provide input "prompts" for following
GET statements.

PUT TO <string address expression> : <output edit 1list> ;
The line of text resulting from the PUT editing is assigned to the
specified string. No carriage return is at the end of the string.

PUT (<file descriptord>) <output edit 1list)> ;

The text 1line, with carriage return, is sent to the specified text
file.

A file descriptor is:
<integer file pointer> [\ <eof and error label)]

All disk files are referenced through the use of an integer pointer
variable assigned by the OPEN statement. The optional eof and error

label is the program label to branch to if an eof or error condition
is detected during I/O0.

PUT TO (<address expr>,<length expr>)<output edit 1ist>;

This allows you to edit variables into a string of text and then place
that text at any selected memory address, without storing it in the
form used by SPL string variables. This is wuseful in working with
direct I/0 disk buffers and other structured data organizations.

The number of characters specified will be stored in memory. No return
or 1line feed or Null will be appended at the end of the line. If the
resulting output string is shorter than the number of characters
specified, then blanks will be appended on the right. If longer,
characters on the right will be truncated.

-37-

,‘,4

SPL 1.30 User's Manual

15.1. Input Edit Lists

During input text editing, the source text 1line 1is scanned under
control of the input edit 1list. The form of this list is:

<input edit term> [, <input edit term>] ...

There are several forms of input edit terms.

15.1.1. Integer or Real variable address references

If you specify the address of a numeric variable, the input text line
is scanned from its current position, skipping blanks. If a numeric
literal 1s encountered, its value 1is assigned to the specified
variable. The scan cursor is positioned to the character following the
character used as a delimiter to end the 1literal. If no 1literal is
encountered, the cursor 1is positioned to the first non-blank
character.

As an example, If the input line is:
123,19XYZ
is read by the statement:
GET I,J,further editing terms;
Then I is assigned the value 123, J is assigned the value 19, and the

cursor 1is positioned to the character Y in the data for further
editing.

15.1.2. Integer or Real Fixed length references

You may also specify a fixed field width specification. That many
characters will be scanned for a valid number. No matter how many
characters of that field are used by the resulting number, the scanner
will be positioned after the entire field for the next input edit
term. For fixed field specifications only, 1leading zeroes do NOT
indiciate hexidecimal notation. This allows a string of digits to be
broken into seperate components. For example:

GET I\2,J\3;
will read the data 01045 and set I=1 and J=45.

On real variables, only the field width may be specified. No decimal
place default is available.

-38-

(s TR U O O Y A R (NN S SO [SN iy S

‘when read by the statement:

SPL 1.30 User's Manual

15.1.3. String Address Specifications

If a string address is specified, then the rest of the input line from
the current cursor position is assigned to the string variable.

For example, the statement:
GET LINE;

will read an entire line into the string LINE.

15.1.4. String Address with length specifications

If the specification is of the form:

<{string address expression> \ <integer expression>

The integer expression will determine the number of characters, Q5

starting at the current cursor position, to assign to the string
variable. Also, the cursor will be advanced by that number of
characters. If there are not enough characters remaining on the input
line, then the result string will be padded with blanks on the right
end to make it the desired length. If the cursor is at the end of the
input text, then a null string will be assigned to the string

variable.
For example, the input text:
1234567890 ALPHA

GET S\4,T;

where S and T are string variables will result in S being set to)
"1234" and T being set to "567890 ALPHA". (

-39-

T

1 /o 4

—]

L

T~

—

SPL 1.30 User's Manual

15.1.5. String address expression with delimiter
You may also specify that a string variable is to be set to the
characters starting at the current cursor position and continuing
until a certain character occurs. This character is called the cursor.
It is not part of the assigned string value, and the cursor 1is
positioned after it for further scanning. If the delimiting character
does not occur, the cursor position remains unchanged, and the string
variable is set to a NULL string.
This is specified by:
<{string address expression> 'c
where ¢ is the delimiter character. For example, the input line: °
01234567890 ALPHA: BETA
When read by the statement:
GET R,S':,T;
Where R is a real number, and S and T are strings, results in
R=1234567890, S="ALPHA" and T=" BETA".
15.1.6. Tab to position

The scan cursor can be set to any position‘either forward or backward
by the TAB term:

<{integer expression>
The value of the expression determines the next column to be scanned.
The first column of the input line is numbered 1.
15.1.7. Mark Column Position

The current column number that is pointed to by the scan cursor may be
saved in an integer variable by using the term:

? <{integer address expression>
Note that this may be used to scan the same information twice:

GET S':,?IPOS,T,#IPOS,R;
The above cxample, assuming that S and T are strings, IPOS and R are
integers, will 1let you scan to the position of a delimiter, and then

set a string equal to the rest of the line, and then return to the
position after the delimiter and scan for an integer value.

-40-

)]

——

SPL 1.30 User's Manual

15.1.8. Skip columns
The specification:
\ <{integer epression)

causes the input scan cursor to advance the indicated number of
position, + or -, from its current position. If this would take it
past the end of the input line, then the cursor is positioned to the
end of the input 1line. If this would cause the cursor to be
positioned before the start of the line, then the cursor will be set
to the first character in the line.

15.1.9. Skip to character pattern
The specification:

= <string expression>
will cause the cursor to advance until the string expression has been
matched in the input 1line. In that case, the cursor will be
positioned to the character after the matched string occurance. If it
does not occur in the remaining part of the input line, the cursor is
not moved.

15.1.10. SKIP specified character

It is possible to cause all occurances of a character from the current
scanner position to be skipped, by specifying:

-C skip any occurances of the character "c"
starting at the current scanner position

Skipping of characters stops when any character other than "c¢" 1is
found. The following example would get a name, after skipping leading
blanks:

get - ,name;

-41-

SPL 1.30 User's Manual

15.1.11., Term Class Delimited string specifications.

In SPL you may specify that a string 1is to be read consisting of
characters that fit (or do not fit) the rules for certain selected
types of terms. The specification is:

<{string variable reference>=<testname>
or
<{string variable reference>#<testname)>

where = specifies all characters that fit the desired term type, and #
specifies only characters that do NOT fit the desired term type.

The following term types are provided for <{testname)> :

DIGIT only character 0 through 9 are accepted

ALPHA only letters of the alphabet are accepted

ANCHR 1letters or digits are accepted

LABEL The first character must be a letter, but
any folowing characters may be letters or digits.

INUM characters in a sequence making an integer literal
are accepted. This includes leading zeroes allowing
hexidecimal specifications.

STLIT The first character must be ". All characters
after that until the next "™ are included. Two "
characters in a row will be included and not
end the string.

The test names are actually the names of assembly language
subroutines, so you may write your own tests if desired. The rules for
such a subroutine are:

Only ri1, r2, and r3 may be used. r3 will be set to zero for the first
test of a string, and may be used to count characters if desired. The
subroutine will be called with a BL instruction for each character,
and must test the character addressed by ®rl4. Before returning, ri
must be set to either OFFFF if the character is to be included, or
zero if it is not to be included in the string. '

424

SPL 1.30 User's Manual

15'1‘12. IF...THEN.'.m‘SE

SPL also allows conditional formatting by letting you use the IF THEN
ELSE 1logic construct inside edit 1lists. It is used in the following
manner:

IF <integer expression> THEN <input edit term>
[ELSE <input edit term>]

To allow more than one edit term per condition, you may use {braces}
to contain an input edit 1ist as if it were a single input edit term.
An example of the use of this might be to allow two different types of
"commands®™ to be input to a program. One form might be:

TEXT:35,HELLO
to specify TEXT on line 35 of a doccument, and

VALUE:35,192

to specify that two values are to be read in.

The following GET statement will do this for you:
GET CMD':, IF CMD="TEXT"™ THEN (NR,S} ELSE (I,J} ;

This will assign NR and S if the command is "TEXT", and will assign I
and J if it is not.

-43-

SPL 1.30 User's Manual

15.2. Output Edit Lists

Output editing builds a line from specifications given in the output
edit 1ist. The form of an output edit list is:

<output edit term> [, <output edit term>] ...
There are several forms of output edit terms.
15.2.1. String data expressions
A string expression may be output by using the form:
<string data expression> [\ <integer length expression)>]

If a length is specified, only that many characters of the string
expression will be output. If the string is too small, it will be

padded with blanks. If no length is specified, then the entire string
will be output.

When a fixed 1length field is specified for a string, the string is
normally left-justified in that field. Left or right justification
may be specified by following the \ character with <« for left

Justification, and > for right justification. An example, used for
column headings, 1is:

PUT "NAME"\<20,"AMOUNT"\>10;

15.2.2. Integer data expressions
Integer data expressions may assume the following forms:

<integer data expression> [\ <integer length expression)>]

or

® (integer data expression> [\ <integer length expression)>]
The leading ® specifies hexidecimal output. If it is not used, decimal
form is wused. If no 1length 1is specified, then only the number of
characters necessary are used, followed by one blank. If a length 1is

specified the integer value 1is right-justified in a field of the

specified size. Blanks are used to fill a decimal field, and zeros are
used to fill a hexidecimal field.

An example, assuming that I contains 10 and J contains -1, is:
PUT I,J,%I,J\6;

This will output the text "10 -1 OA -1".

T

-

SPL 1.30 User's Manual

15.2.3. Real data expressions
Real valued expressions are output with the form:
<real data expr> [\ <integer size expr> [: <integer dp expr>]]

If no field width is specified, then only the necessary number of
characters are used to represent the value. If a fixed field size is
specified, then the value will be right-justified in the field and
left-padded with blanks as necessary. If the number of decimal places
is not specified, then zero decimal places will be used. Scientific
notation will only be used if the number can not be expressed any
other way. A blank will follow a real numeric field if no field length

is specified. If an integer data expression is used with a decimal
places specification then the decimal point will be edited into the
field in that position arbitrarily.
As an example, if R=1.23456 then:

PUT R,R\4,R\4:2;
will output the text string "1.23456 1 1.23",
15.2.4. Tab to selected column

The term:
<{dnteger data expressiond

allows you to specify what character position in the edit line will be
used by the following edit term. Column positions are relative to the
start of the edit 1ist, not to physical columns on the I/0 device,
since it is possible with PUT to start another "line™ of output on the
same physical line used by an earlier PUT: statement.

15.2.5. Skip columns

" The specification:

\ <integer specification>

will cause the desired number of columns, + or -, to be skipped over,
and the output column pointer repositioned. If this would position it

beyond the start or end of the edit line, then the column pointer is
positioned at that end.

452

! ;
- —

SPL 1.30 User's Manual

15.2.6. Mark present column position
The term:
? <integer address expression>

allows you to save the current edit cursor position in an integer
variable, in the same way that such a term is used by the GET
statement. This can be used to line up information with free form
output:

PUT NAME$," ", ?NPOS, ADRSO;
PUT #NPOS, ADRS1;
PUT #NPOS, PHONE_NUMBER;
so that the result might look like:

MARK HAMMERSCHLINGER 1234 W. 6th St.
Eureka, ZZ 99900
(602) 279-4545

15.2.7. IF...THEN...ELSE

The PUT statement also allows you to use the IF THEN ELSE logic
construct to provide variable formatting, in an identical manner as
used by GET. The format is:

IF <integer expression> THEN <output edit term>
[ELSE <output edit term>]

You may use { <output edit list> } to allow more than one term to be
used with THEN or ELSE.

An example of this might be:
PUT NAME\14,IF CREDIT=BAD THEN "pick up card"™ ELSE LIMIT\7:2;
could print out lines like:
ARTHUR J. JAY 1000.00
BORG ALLISON 500.00

BLACK PETE pick up card
MICKEY MOUSE 5000.00

-46-

R
W

T

SPL 1.30 User's Manual A

16. DIRECT FILE INPUT / OUTPUT

Disk files may be accessed using GET and PUT for text files, and READ,
WRITE, and SEEK for direct access files, by first opening the file.
OPEN locates the file on the disk and prepares pointers and buffers in
memory for use with the file.

An integer variable 1is wused as an address pointer to this "file
buffer™ area of memory. The OPEN statement assigns a value to this
integer file variable, and that value should not be changed until
after the file is CLOSED.

Closing a file forces any data in the buffer out to the file and
releases the buffer space to free memory for other use. You must close
all files that you use before ENDing a program. SPL will NOT close
them for you.

16.1. The OPEN Statement
The syntax of the OPEN statement is:

OPEN <integer address expression>
FOR <string file name expression>
{ INPUT | OUTPUT | DIRECT }

[\ <error address expression) ;

INPUT specifies a text input file to be used with GET. OUTPUT
specifies a text output file to be used with PUT. DIRECT specifies a
binary file used with READ, WRITE, and SEEK.

16.2. The CLOSE Statement

CLOSE <integer address expression)
[\ <error address expression>] ;

If no error address is specified, then CLOSE will ignore the error.
This is done so that all files may be closed, even if one CLOSE
statement has an error.

As an example to read lines of text from the file "MYDATA"™ and print
them on the console, until the end of file, you might use the program:

PROGRAM type;
POINTER 1i; STRING s;
type: OPEN i FOR "MYDATA"™ INPUT;
loop: GET (1i\done) s;
PUT s;
GOTO loop;
done: CLOSE 1{1;
END.

The keywords appear in uppercase and identifiers in lower case for
clarity. This is not required.

-47-

{ ‘ j

SPL 1.30 User's Manual

16.3. The READ and WRITE statements

. Binary file I/0 is performed by using the READ and WRITE statements. A

buffer space sufficient to hold all of the sectors read or written at
one time must be provided. The buffer will contain the exact data
that is on the disk. No formatting or other changes to the data will
be made by READ or WRITE. Pointer variables and structures may be used
to access data contained in the buffer. Disk I/0 buffers may be
ALLOCATEd and used through a pointer variable in the READ or WRITE

statement.
The format of a READ or WRITE statement is:

READ <file reference)> <buffer address reference>
[, <integer sector count expression)] ;

WRITE <file reference)> <buffer address referenced
[, <integer sector count expressiond] ;

Where <file reference) is:

(<file identifier variable reference>
[\ <error or EOF branch address expression>])

A file indentifier variable is a pointer variable that is used by SPL
to relate the information contained in the OPEN statement to the READ

and WRITE subroutines.

As an example of direct disk I/0, the following program will copy
information from FILE1 to FILE2.

PROGRAM directcopy;

STRING namel "FILE1", name2 "FILE2";
POINTER fromfile, tofile;

INTEGER sectorbuffer(128);

directcopy:

OPEN fromfile FOR namel1 DIRECT;

OPEN tofile FOR name2 DIRECT;

loop: READ (fromfile\done) sectorbuffer; _
WRITE(tofile) sectorbuffer;
GOTO 1loop;

done: CLOSE fromfile; CLOSE tofile;
END.

-48-

SPL 1.30 User's Manual

16.4. The SEEK statement

The seek statement allows you to position a file to any desired sector

for the next READ or WRITE. Sectors are numbered starting with 0. The
format is:

SEEK (<file reference>) <integer sector expression) ;

The statement:
SEEK (file\error) 25;

Tells the operating system to seek to the 25th sector of FILE, and if
an error occurs, to GO TO ERROR.

16.5. CREATE files

To create a file, use:

CREATE <string expression for file name)>
[,<integer expression for file size in sectors >]

[\ <error address)] ;
If no length is specified, the file size will be determined by the
operating system in use. Under MDEX, a default file size will be

assigned. Under NOS, the file will be automatically created as it is
written. If the file already exists, the error exit will be taken.

16.6. DELETE file
To delete a file, use:

DELETE <string expression for file name)>
[\ <error address>] ;

-49-

——
|)

(——

SPL 1.30 User's Manual

16.7. RENAME file
To rename a file, use:

RENAME <string expr for old file name> TO
<(string expr for new file name)>
[\ <error address>] ;

example: RENAME "master"™ TO "mbackup";

16.8. File Size Function FSIZE

The function FSIZE will return the number of sectors allocated to a
specified file. The argument is a string expression specifying the
file name. As an example:

NSEC=FSIZE("temp2$")

will place the numbr of sectors allocated to file TEMP2$ into the
integer variable NSEC.

16.9. Error Handling with SPL

If a file I/0 error occurs, and an address for handling the error 1is
not specified by the file I/0 statement, then and error message is
generated and the program terminates. The exception to this is CLOSE.
If there 1is an error closing the file and no error address is
specified, then the error is ignored. This is because several files
may be closed at the end of the program. An error closing one file
should not prevent the program from trying to close the other files.

In your error handling routines, you may use the function IOSTAT to
get the error status code. This integer value is identical in meaning
to the error codes specified in the Termination error messages. The
first two digits of the error code specify the type of statement that
was executing when the error was detected. The next two digits
specify the Operating System error code that initiated the error
response. These codes are specified in the appropriate operating
system manual. Some of the more common codes are listed on the next

page.

-50-

L__J

L

_J

[

—

)

)

SPL 1.30 User's Manual
#8% FRROR CODES RETURNED IN IOSTAT and ERROR MESSAGES

0 no error from system - used to indicate
actual write length < desired write length.

1 end of file

2 Unrecoverable device error

3 file not found

y bad file index

5 bad file name syntax

6 bad subfunction (probably an SPL bug)

7 file not executable (on a Link statement)

8 too may files open

12 Not enought room on disk for create
13 No room in directory for create

18 File already exists - can't create

The statement type codes are as follows:

01xx Direct Read

02xx Direct Write

03xx Direct Seek

O4xx Direct Open

05xx Text Output Open

06xx Put Text Write

07xx Text Input Open

08xx Get Input Read

09xx Direct Close

OAxx Text Close

0BOO No Memory for Buffer Allocate (See ALLOCATE command)
0Cxx Create file error

0ODxx Delete file error

OExx Rename file error

OE0O0 Rename - drives not the same

OFxx Size file FUNCTION error on directory read

As an example, error 0801 is an end of file while reading a text file
with a GET statement.

-51-

<w

)

SPL 1.30 User's Manual

17. DATA ORGANIZATION TOOLS

SPL provides several statements that allow data to be organized in a
variety of ways.

17.1. Structures

A structure is a dummy map of an area of memory that describes the
relationships between different types of data. This map may be placed
anywhere in memory because the start of the structure is treated 1like
a pointer variable.

As a simple example, consider:

POINTER MAP;
STRUCTURE (MAP) I 0, J 2, K 4, REAL A 6, B 14;

Now if you say MAP=1000 then whenever you use any of the variables in
the structure, they will mean the location relative to 1000 indicated
by their position in the structure.

I is at 1000, J is at 1002, and K is at 1004
A is the real number at 1006, and
B is the real number at 1014.

If you then say MAP=2000 then

I is at 2000, J is at 2002, and K is at 2004
A is the real number at 2006, and
B is the real number at 2014.

Structures are very powerful, because they 1let you treat data in

~ memory in different ways. You might store data on a disk as an array
of integers to speed up I/0, but work with it in your program with a
structure. And you can determine different types of records with one
structure, and then start referencing the data by a structure that is
appropriate to that record type.

The format of a structure statement is:

STRUCTURE (<pointer address expression))
<{structure term> [, <structure term>] ;

where a structure term is:
[INTEGER | DOUBLE } BYTE | REAL | STRING]

<identifier> <integer literal
[, <identifier> [(<integer literal>)]] ...

-52-

O -

SPL 1.30 User's Manual

If you use an indirect reference with a structure variable, then the

data in the structure will be treated as a pointer to the actual data.
As an example:

POINTER MAP;
STRUCTURE (MAP) I 0, J 2, BPTR 3;

BPTR=adr(A);
I=6BPTR;

I will contain the data that was stored in A.

Use of structure elements as pointers should not be mixed with disk
I/0, as the data that would be stored on the disk is the address of
that data at the time the file was written, and not the data itself.
It is acceptable to use pointers to assign data to structure elements:

POINTER MAP, BPTR;
STRUCTURE (MAP) I 0, J 2, K 4;
"INTEGER A;

BPTR=adr(A);
I=@BPTR;

Note the difference: BPTR is not within the structure. This

restriction only applies when using structures to manipulate disk data
records.

An analogous situation occurs with strings. Since string variables
actually store a pointer address of a string data buffer, strings

within a structure must be handled differently than normal if the
structure refers to a disk data record:

POINTER DBFR;
STRUCTURE (DBFR) I 0, J 2, BYTE NAME 4;

To store a string within the structure starting at NAME, use the form

-of PUT that allows address specification:

PUT TO (NAME,NAMESIZE)"string data";

This situation will be cleared up in a future release of SPL.

L]

SPL 1.30 User's Manual

17.2. Buffer Alocate and Release

SPL allows you to dynamically control memory usage. By using pointer
variables and structures, you can allocate a buffer of memory space,
and release it for other use when it is no longer needed. The format
of the ALLOCATE statement is:

ALLOCATE <pointer address expr> , <integer byte count expr>
[\ <executable address expressiond] ;

The release statement is:
RELEASE <pointer address expression> ;

As an example, the following program will allocate a buffer and use it
for saving a line of input text:

- -PROGRAM buffers;
POINTER bptr;
buffers:

ALLOCATE bptr,80;
GET €bptr;

PUT ébptr;
RELEASE bptr;
END.

Use the pointer variable as a normal integer for ~ailocation and
release of buffers, and as an indirect address to access the data in
the buffer.

Normally, if there is no memory to allocate a buffer, an error message
is generated. However, you may specify a place in your program to
handle this condition. An example is:

ALLOCATE bptr,80\nomemory;

nomemory: § come here if no memory to allocate §

-54-

T
. |

] — 1

(N N

SPL 1.30 User's Manual

17.3. Queues

A QUEUE is a linked 1list of buffers that are usually set up using

ALLOCATE and RELEASE. There is a set of pointers to the first and last
buffer, called a queue head, that is declared like a type of variable,
using the QUEUE statement:

QUEUE <queue name> [, <queue name>] ... ;

Once defined, the QUEUE variable may be used with the statements
QINSERT, QPUSH, and QREMOVE.

The QINSERT statement places a buffer at the end of the linked list.
This is appropriate for using a queue as a FIFO buffer list. Its form
is:

QINSERT <pointer variable expression> IN <queue variable) ;

The QPUSH statement places a buffer at the start of the linked 1ist.
This is appropriate for using a queue as a FILO buffer 1list, or a
stack of buffers. Its form is:

QPUSH <pointer variable expression> TO <queue variable> ;

The QREMOVE statement removes the first buffer from the queue and
places its address into the designated pointer variable. The format
of the remove statement 1is:

QREMOVE <pointer var expr> FRM <{queue variable> \ <empty adrs> ;

If there are no buffers in the queue, the program will GO TO the
specified <empty addressd>.

The first two words of any buffer used with a queue must be reserved
for 1linked list pointers. The first word points to the address of the
previous buffer in the 1list, and the second word points to the address
of the next buffer in the list.

=55~

1 1 0]

—]

1

c

1]

L J~CJ

SPL '1.30 User's Manual

17.4. Lists

SPL provides statements for processing lists of dissimilar items by
storing the address of each item, and a cursor that selects which item
shall be processed next. Lists are considered an organization of
pointer variables.

The statements used with lists are:

POINTER - to specify the list

LIST - to load the entries into the list

APPEND - to add more entries to a 1list

NEXT - to scan the items in a 1list

START - to restart the scan at the beginning of a list

17.4.1. Specifying a List
To declare a 1list, declare a pointer variable table containing
sufficient room for all the items in the list plus three words of
overhead. An example is:

POINTER names(33) % 30 items + 3 overhead § ;
17.4.2. Loading Data into a List
A 1ist is set up with the LIST statement, which 1is executable. This
statement assigns the values of address expressions to list entries.
Its format is:

LIST <listname> = <adr expr> [, <adr expr>] ... ;
An example, using the above declared 1list NAMES, is:

LIST names=a,b,6c,@(d+20),€(0C000);
You may append addresses to the end of a 1list to build a 1list
dynamically, as when buffers are allocated and then stored in a list,
with the append statement:

APPEND <address expr> TO <list variable adrs expr> ;
An example of the use of append with the above list is:

ALLOCATE ptr,1024;
APPEND ptr TO names;

-56-

;

,_
L

{

CJ o 4 /] 3

—

SPL 1.30 User's Manual

17.4.3. Scanning a List

Once a 1ist has been created, the NEXT statement is wused to
sequentially access elements from the list:

NEXT <pointer adrs expr> = <list adrs expr>
[\ <end of 1list branch address>]

An example is:
NEXT ptr=names\alldone;

If the end of 1list branch address is ommitted, the NEXT statement will
automatically start the 1list scan over upon reaching the end of the
list. If the end of list exit is taken, the next 1list access using
NEXT will access the first entry in the 1list.

Sometimes you will wish to start processing a list from the start,
even though you have not finished the list. You can do this with the
START statement:

START <1ist adrs expr> ;

As an example of using a 1list, the following program will read a line
from the console, and search a list for a string that matches, and
return the subroutine address that relates to the matched name:

program listdemo;

pointer ptr, names(11);

string n1 "line", n2 "circle", n3 "box", ni "help"™;
string line;

listdemo: ¥ first set up the list ¢
list names=n1,subri,n2,subr2,n3,subr3,nl,subrl;
doit: £ now get a "command" to look up ¥
get line;
start list;
trynext:
next ptr=names\notfound;
if line=6$ptr then found
next ptr=names ¥ skip associated subr entry § ;
goto trynext;
notfound:
put "What?"; goto doit;
found: next ptr=names; ¥ get associated subroutine §
call 6éptr; £ perform the subroutine %
goto doit; ¥ go get next command §
end.

In the above example, subril, subr2, subr3, and subrld, are assumed to

be subroutines that process the indicated commands, and must be
defined in a different program module.

-57-

—

]

s [s B e [sl s S s

J

L

s S e N

L

SPL 1.30 User's Manual

17.5. Stacks

SPL allows you to have First In / First Out data stacks in a
high-level language. You may declare as many named stacks as memory
will hold. By using the PUSH and POP statements to enter and remove
data from the stacks, recursion, re-entrant code, and multi-level
co-routine programing becomes possible.

Stacks are specified with the non-executable statement STACK:

STACK <identifier> (<integer byte count)>)
[, <identifier> (<integer byte count>)] ... ;

Specify the total number of bytes of data that may be stored on the
stack. Integers take 2 bytes, pointers take 2 bytes in the present
release, but will require 4 bytes in future releases. Real values
require 8 bytes each.

Data may be pushed to stacks ;1th:

PUSH (<stack identifier)>) <variable address list>;
and removed from a stack with:

POP (<stack identifier)>) <variable address list>;

As an example, a recursive subroutine needs a data workspace for each
nested level of call. The workspace may be referenced from a
structure, and the buffer address pushed to a stack each time the
routine is called.

Subroutine recurs;

pointer workarea;

stack wastack (100);

structure (workarea) cceecececscess 3

integer wasize 256 ; ¥ needed workarea size in bytes §

recurs: push (wastack) workarea;
allocate workarea,wasize;

release workarea;
pop (wastack) workarea;
end.

-58-

—

SPL 1.30 User's Manual

18. SUBRQUTINES

If every part of a program had to exist in one text file and be
compiled at one time, programs would often grow unmanageably large.
Also, variable names might often be wused in different places in
different and incompatable ways.

Subroutines solve this problem. You may write your program in smaller,
easy to edit pieces, and test each part seperately. You can build a
library of common sSubroutines that only need be LINKed into your
program for use.

A subroutine has the general organization:

Options statements, if any
The SUBROUTINE statement
SPL statements

END.

The SUBROUTINE statement has the following form:
SUBROUTINE <identifier)> [<parameter list>] ;

where the parameter list is:
(<variable identifier> [, <variable identifier>])

The identifier that follows the SUBROUTINE keyword is the name of the
subroutine, and is also the statement label of the first statement to
be executed. Such a statement label is called an ENTRY. A subroutine
may have several entry labels, if you define any extra entry labels
with the ENTRY statement:

ENTRY <identifier> [<paramter 1ist>] ;

Parameters are "dummy" variables that are specified each time the
subroutine is CALLed. They must be specified inside the subroutine
with the appropriate type statement, but no data may be specified 1in
the subroutine's type statements for those variables.

ENTRY statements are placed at the location where that ENTRY code
starts. They are "skipped™ by in-line code. If the parameters for an
entry are the same as for the subroutine, they need not be listed.

SPL 1.30 User's Manual

A main program or another subroutine may CALL a subroutine to cause it

to be executed. The format of the CALL statement is:

CALL <subroutine entry adrs expr> [<call parameter 1list>] ...

where the call parameter 1ist is:
(<parameter> [, <parameter>] ...)
and each parameter may be:

an address expression or
a literal of the correct type

Also, subroutines may use variables that are defined externally using

&, See the description of INTEGER, REAL, and STRING
more information.

As an example of a subroutine's usage:

SUBROUTINE message(query,answer);
STRING query, answer;
STRING default "none";
message:

PUT: query;

GET answer;

IF LEN(answer)=0 THEN answer=default;
END.

The main program that might use this is:

PROGRAM main;
STRING name,adrsi,adrs2,phone;

main:
CALL message("What is your name?",name);

statements

CALL message("What is your street address?",adrs1);

CALL message("City, State, and Zip code?",adrs2);
CALL message("What is your phone number?",phone);
eesseese$ use the information just entered §

END.

for

Note that the subroutine returns to the CALLing program when the

subroutine's END. statement is executed.

-60-

SPL 1.30 User's Manual

18.1. Assembly Language Subroutines

SPL can call subroutines written in assembly language if certain rules
are followed. First, certain registers have specified uses in SPL, and
either must not be changed, or they must have their values restored on
return.

The CALL statement generates the code:

mov r8,®r9+ save old parameter pointer
mov r9,r7 save new parameter pointer

<{parameter addresses are pushed to the R9 stack)>
bl subroutine call the subroutine

At the subroutine entry address, the following code must exist:

jmp $+6 (if multiple entry point)
subname mov r11,%r9+ save return address
mov r7,r8 R8 now references parameter address list

<subroutine code. R8, R9 must not be changed>
<R10 is a utility stack, and may be used 1if
it is restored before the subroutine ends)>

b i] exit the subroutine.
brt§

To use parameters, you should define equates for each parameter. The
SUBROUTINE statement:

SUBROUTINE alpha(a,b,c,d,e);

will generate the code:

a equ 0
b equ 2
c equ y
d equ 6
e equ 8

since each parameter address takes two bytes. To reference the address
of a parameter, use the EQU label as an indexed R8 reference:

mov d(r8),ro0 Get D address

-61-

SPL 1.30 User's Manual

To get the aétual variable data, an indirect reference must be made:

mov D(r8),ro
mov *r0,r0 D data now in rO

A subroutine may use BL or BLWP instructions without concern for
changing registers, as they are not in wuse during a CALLed
subroutine's execution.

The following code sequence will tell you how may parameters have been
supplied by the CALL statement:

mov r9,r0

dect ro
s r8,r0
srl ro0,1

The number of parameter addresses is now in roO.

Since SPL wuses the same variable names in the generated code as in
SPL, externally defined variables may be referenced using the 1link
editor. Variables defined in the assembly code should have their label
followed by an #:

xref® data 01234

Any undefined 1label in assembly code automatically generates an
-external reference for the LINK editor to resolve.

-62-

SPL 1.30 User's Manual

18.2. CODE modules

It may be desireable to break your main program into smaller pieces
that do not need the overhead of parameter passing structures and the
call statement. If you wish to write sections of code that are reached

by GOTO or DO statements only., then you may compile them in a CODE
module. its form is:

CODE <module name>;

.«s 8Spl statements

END.

You should declare any labels that you wish to goto or do with an ¥,
as described in the appropriate section of this manual. All variables
that are to be shared between the code module and the main program
should also be defined using ® for local and external definitions. Any
variables defined in the code module and not specified with an # will

be local to the code module and not available to external code or
program modules.

-63-

SPL 1.30 User's Manual

19. Preliminary Information on Future Releases of SPL

SPL is a growing language. It has been planned out to a much larger
extent than the current implementation. The following information is
provided so that you may see in what direction future releases will be
moving. Since it is preliminary, all information contained in this
section is subject to change.

19.1. Features to be implemented in SPL 1.40

The following features are expected to be implemented in release 1.40
of SPL:

19.1.1. Virtual Disk File Read/Write/Seek

Disk file access specified by a byte position in the file, with any
number of bytes per record.

19.1. 2. TEXT Variables

SPL string variables are dynamically allocated text buffers. While
this conserves memory, there are instances where it creates problems,
as in disk buffer structures. TEXT variables will be non-dynamic

strings with a specified maximum size, that will work correctly, (and
quickly), within disk buffers and structures.

19.1,.3. DO WHILE and DO UNTIL

The DO programing construct will be expanded to allow the structured
forms WHILE and UNTIL.

19.1.4. AVMEM function

The AVMEM function will return the byte size of the largest block of
memory currently available for allocation.

19.1.5. QUEUE operations
The QUEUE operations will be modified to allow scaning forward and

backward through the queue and performing insertions, deletions, and
re-arangements of buffers not at the start or end of the queue.

19.1.6. LIST operations
List operations will be expanded to include random access within a

list, random repositioning of the 1list cursor, sub-lists, and type
(INTEGER, POINTER, STRING, etc) testing of list elements.

-6l-

SPL 1.30 User's Manual

19.2. Features to be implemented in SPL 2.0
19.2.1. Arrays and Subscripting

19.2.1.1. introduction

An array is a collection of related data items of the same type. Each
array has a single name, and may have more than one variable in it.
The size of an array is the total number of individual variables
stored in 1it. :

Picture an array of three integers, called A. It might look like this
in memory:

234 -98 4s

You may refer to a specific element (variable) in an array by using a
subscript. This 1is an expression that specifies which element of the
array you wish to use.

In the example above, A(1) is a variable that currently has the value
234 stored in it. A(2) holds -98, and A(3) contains 45.

Subscripts are written by entering the array name and then the
character (followed by an expression indicating which element you
wish to use, and then ending the subscript with the character).

For example, you may write A(NR) which means that the current value of
the variable NR should be used to pick out which element of array A
that you wish to use. If NR contains the value 2, then A(NR) refers to
A(Z) [

19.2.1.2. Multi-dimensional Arrays
Arrays may also be organized into rows and columns. For example, the

array B shown below has 3 rows of four columns each. The size of B is
12, since there are 12 elements in it.

123 67 -8 32767
-1000 300 982 =17
4 0 0 123

To specify which element of such an array you mean, you give the
subscript for the desired column, and then the subscript for the
desired row, seperated by a semicolon, such as B(X;Y). For example,
B(2;3) has the value 0, B(3;2) has the value 982, and B(1;1) has the
value 123. -

An array such as A is called a single dimension array. B is an example
of a two dimension array. In general, the number of subscript values
that must be specified to pick out a single element is the number of
dimensions an array has.

-65-

SPL 1.30 User's Manual

Arrays may have as many dimensions as you desire. A three dimensional
array may be used, and you might wish to think of it as consisting of
rows, columns, and pages.

Arrays with more than three dimensions are not often used, perhaps
because it 1is harder for people to conceive of them. You might
consider a four dimensional array to be made of rows, columns, pages,
and books.

19.2.1.3. Specifications of several elements

In SPL, you may specify more than one element of an array at one time.
There are several ways that this can be done. You might 1list the
subscripts of each element you wish to use, specify a range of
subscripts that you wish to use, or specify a starting subscript and
how many elements that are to be used.

19.2.1.4. Specifying by list

To specify elements by list, you include the subscript of each element
in order, seperated by commas, as in A(2,3,1) which indicates that
first A(2) is to be used, then A(3), and lastly, A(1).

An example of specifying elements by list for a two dimedsional array
is: .B(2,4,5;7,5) which is the same as:

B(2;7)
B(4;7)
B(5;7)
B(2;5)
B(4;5)
B(5;5)

19.2.1.5. Specifying by Range

Specifying elements by 1ist is quite a time saver when the elements
are to be used in an unusual order. When you wish to use several
elements of an array in a row, it is easier to specify them by range.

This means that you specify the starting and ending subscripts, and
all of the elements in between are used:

C(3:6) means C(3), C(4), c(5), and C(6)
The generalized form of expressing a range is FROM:TO where FROM is
the first subscript to be used, and THRU is the last subscript to be

used. The range may be specified in reverse:

C(6:3) means C(6), C(5), C(4), and then C(3)

-66-

L/,___,.‘

SPL 1.30 User's Manual

You may also specify the increment. Normally, the value 1 is used. If
you specify the BY increment in the form FROM:THRU\BY then the value
of BY is added to the value of FROM to get the 2nd and following
values. As an example,

19.2.1.6. Specifying by Count

You may also ‘specify a group of elements by count, that is by using
the form FROM#COUNT or FROM#COUNT\BY. This means to use COUNT
different elements, starting with element FROM, and incrementing by BY
(or by 1 if BY is not specified). '

C(5#3) means C(5), C(6), and C(7)
C(5#3\2) means C(5), C(7), and C(9)
19.2.1.7. Specifying All

If all possible values of a subscript are to be used, this is
indicated by the character ®. If an entire array is to be used, simply
use the array name without any subscripts:

" If array B has 3 rows and 4 columns, then B(2;%) means
B(2;1), B(2;2), and B(2;3).

B without subscripts means B(1;1), B(2;1), B(3;1), B(4;1),
B(1;2), B(2;2), B(3;2), B(4;2),
B(1;3), B(2;3), B(3;3), B(4;3).

19.2.1.8. Mixed specifications

SPL also allows you to mix these forms, by allowing specification by
range or count as an element in specifying by a list. An example would
be:

C(3:5,1,7T#4,6) which specifies:

c(3), c(4), C(5) then

C(1) followed by

c(7), c(8), c(9), and C(10)
ending with C(6).

SPL allows so many forms of array specification because many program
errors are made writing "loops"™ to express these different groupings
of data. Also, by including these forms of grouping in the compiler,
the generated code can be optimized, reducing the overhead normally
associated with random subscripting.

AN

-67-

————

i (4‘__'!
| { i

|
~

N R D e

o

——

SPL 1.30 User's Manual

19.2.2. Automatic Statement Looping

There are two ways that multiple elements of an array may be used.
First, each time a statement is executed, then one element in the
array list is used. This is the normal form. As an example,

Put A(1,4,3)

Will print out A(1) the first time the statement is executed, A(4),
the 2nd time, and A(3) the 3rd time the statement is executed.

You may also specify an "automatic loop"™ which will print out all 3
values each time the statement is executed, by using brackets instead
of parenthesis: .

Put A[1,4,3] will print A(1), A(Y4), and A(3) each time.
You can even mix the two formats:
A[3#3\2]=B(3,4)+C[2:4]

which means that A(3)=B(3)+C(2),
A(5)=B(3)+C(3), and
A(T7)=B(3)+C(4)

the first time the statement is executed, but the second time the
statement is executed, the meaning is:

A(3)=B(4)+C(2),
A(5)=B(4)+C(3), and
A(T)=B(4)+C(4)

Any statement that has one or more subscript references that use
brackets is considered to use automatic 1looping. An automatic 1loop
continues wuntil some subscript reference finishes. If there are other
loops, they will continue on the next execution of a statement. For
example: ‘

A[3:4])=B[5#4]

will perform A(3)=B(5) and A(Y4)=B(6) on the first execution,
which ends the statement because [3:4] completes its list.

The next time the statement is executed, it will perform
A(3)=B(7) and A(4)=B(8).

-68-

SPL 1.30 User's Manual

19.2.3. LISTs and Automatic Looping

Automatic looping takes on a slightly different meaning when used in a
LIST structure, such as an Input / Output statement. Each loop is
completed before going on to the next entry in a 1list. Any format

specification applied to the "loop specification™ is applied to every
entry in the loop. As an example:

Put A[3:6],B,A[7,2]\3
means to put out A(3),A(4),A(5),A(6), and B using as much space as

needed, but then to put out A(7) and A(2) using only 3 digit places
each.

19.2.4. Declaring an Array

To create and use an array in SPL, it must be declared in a type
statement, such as REAL, INTEGER, STRING, etc. You must list the array
name and the largest value of each subscript. For example,

REAL A(5),B(3;4),C

specifies that A is an array having 5 elements, B is a two dimensional
array having 3 columns and 4 rows, and that C is also a real variable.

Normally, each array subscript begins with 1 and ends with the value
specified. It is possible to specify other starting dimensions, by
using range notation:

INTEGER A(0:4)
specifies an array having 5 elements, numbered 0,1,2,3, and 4. Note
that increments are not allowed when specifying an array dimension in

a type statement. However, count notation is allowed:

STRING S(3#4)

specifies an array of four elements, numbered 3,4,5, and 6.

-69-

. CORTEX USERS GROUP

S.P.L.

USER GUIDE -2

